메뉴 건너뛰기




Volumn 48, Issue 3, 1999, Pages 295-306

Geometric selection of centers for radial basis function approximations involved in intensive computer simulations

Author keywords

Approximation of function; Radial basis function

Indexed keywords


EID: 0345761305     PISSN: 03784754     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0378-4754(99)00002-6     Document Type: Article
Times cited : (2)

References (15)
  • 1
    • 0000621802 scopus 로고
    • Multivariate functional interpolation and adaptive networks
    • D.S. Broomhead, D. Lowe, Multivariate functional interpolation and adaptive networks, Complex Systems 2 (1988) 321-355.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 2
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time series
    • M. Casdagli, Nonlinear prediction of chaotic time series, Physica D 35 (1989) 335-356.
    • (1989) Physica D , vol.35 , pp. 335-356
    • Casdagli, M.1
  • 3
    • 0026116468 scopus 로고
    • Grant, Orthogonal least squares learning algorithm for radial basis function networks
    • C.F.N. Chen, P.M. Cowan, Grant, Orthogonal least squares learning algorithm for radial basis function networks, IEEE Trans. Neural Network 2(2) (1991) 302-309.
    • (1991) IEEE Trans. Neural Network , vol.2 , Issue.2 , pp. 302-309
    • Chen, C.F.N.1    Cowan, P.M.2
  • 4
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions
    • P. Craven, G. Whaba, Smoothing noisy data with spline functions, Numer. Math. 31 (1979) 377-403.
    • (1979) Numer. Math. , vol.31 , pp. 377-403
    • Craven, P.1    Whaba, G.2
  • 5
    • 34249982739 scopus 로고
    • Predicting chaotic time series
    • D. Farmer, J. Sidorowich, Predicting chaotic time series, Phys. Rev. Lett. 59 (1988) 845-848.
    • (1988) Phys. Rev. Lett. , vol.59 , pp. 845-848
    • Farmer, D.1    Sidorowich, J.2
  • 6
    • 51249167823 scopus 로고
    • Least squares surface approximation to scattered data using multiquadratic function
    • R. Franke, H. Hagen, G.M. Nielson, Least squares surface approximation to scattered data using multiquadratic function, Adv. Comput. Math. 2 (1994) 81-99.
    • (1994) Adv. Comput. Math. , vol.2 , pp. 81-99
    • Franke, R.1    Hagen, H.2    Nielson, G.M.3
  • 7
    • 0001018295 scopus 로고
    • Multiquadric equations of topography and other irregular surfaces
    • R.L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res. 76 (1971) 1905-1915.
    • (1971) J. Geophys. Res. , vol.76 , pp. 1905-1915
    • Hardy, R.L.1
  • 8
    • 0002807993 scopus 로고
    • Improved accuracy of multiquadric interpolation using variable shape parameters
    • E.J. Kansa, R.E. Carlson, Improved accuracy of multiquadric interpolation using variable shape parameters, Comput. Math. Appl. 24(12) (1992) 99-120.
    • (1992) Comput. Math. Appl. , vol.24 , Issue.12 , pp. 99-120
    • Kansa, E.J.1    Carlson, R.E.2
  • 9
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite function
    • C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite function, Constr. Approx. 2 (1986) 11-22.
    • (1986) Constr. Approx. , vol.2 , pp. 11-22
    • Micchelli, C.A.1
  • 10
    • 0000672424 scopus 로고
    • Fast-learning in networks of locally tuned processing units
    • J. Moody, C. Darken, Fast-learning in networks of locally tuned processing units, Neural Computation 1 (1989) 281-294.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 12
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • T. Poggio, F. Girosi, Regularization algorithms for learning that are equivalent to multilayer networks, Science 247 (1990) 978-982.
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 13
    • 0001739142 scopus 로고
    • The theory of radial basis function approximation in 1990
    • M.J.D. Powell, The theory of radial basis function approximation in 1990, Adv. Numer. Anal. 2 (1992) 105-210.
    • (1992) Adv. Numer. Anal. , vol.2 , pp. 105-210
    • Powell, M.J.D.1
  • 14
    • 21144459711 scopus 로고
    • On least squares fit by radial functions to multidimensional scattered data
    • N. Sivakumar, J.D. Ward, On least squares fit by radial functions to multidimensional scattered data, Numer. Math. 65 (1993) 219-243.
    • (1993) Numer. Math. , vol.65 , pp. 219-243
    • Sivakumar, N.1    Ward, J.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.