-
3
-
-
0029326264
-
Theoretical and experimental study of coupled vibrations of channel beams
-
Klausbruckner M.J., Pryputniewicz R.J. Theoretical and experimental study of coupled vibrations of channel beams. J. Sound Vibr. 183:1977;239-252.
-
(1977)
J. Sound Vibr.
, vol.183
, pp. 239-252
-
-
Klausbruckner, M.J.1
Pryputniewicz, R.J.2
-
4
-
-
0023536249
-
An exact solution for coupled bending and torsion vibrations of uniform beams having single cross-sectional symmetry
-
Dokumaci E. An exact solution for coupled bending and torsion vibrations of uniform beams having single cross-sectional symmetry. J. Sound Vibr. 119:1987;443-449.
-
(1987)
J. Sound Vibr
, vol.119
, pp. 443-449
-
-
Dokumaci, E.1
-
5
-
-
0024681691
-
On coupled bending and torsional vibration of uniform beams
-
Bishop R.E.D., Cannon S.M., Miao S. On coupled bending and torsional vibration of uniform beams. J. Sound Vibr. 131:1989;457-464.
-
(1989)
J. Sound Vibr.
, vol.131
, pp. 457-464
-
-
Bishop, R.E.D.1
Cannon, S.M.2
Miao, S.3
-
6
-
-
0020477776
-
Beam bending-torsion dynamic stiffness method for calculation of exact vibration modes
-
Hallauer W.L. Jr, Liu R.Y.L. Beam bending-torsion dynamic stiffness method for calculation of exact vibration modes. J. Sound Vibr. 85:1982;105-113.
-
(1982)
J. Sound Vibr.
, vol.85
, pp. 105-113
-
-
Hallauer W.L., Jr.1
Liu, R.Y.L.2
-
7
-
-
0024673750
-
Coupled bending-torsional dynamic stiffness matrix for beam elements
-
Banerjee J.R. Coupled bending-torsional dynamic stiffness matrix for beam elements. Int. J. Numer. Meth. Engng. 28:1989;1283-1298.
-
(1989)
Int. J. Numer. Meth. Engng
, vol.28
, pp. 1283-1298
-
-
Banerjee, J.R.1
-
9
-
-
0020737329
-
Coupled vibrations of beams - An exact dynamic element stiffness matrix
-
Friberg P.O. Coupled vibrations of beams - an exact dynamic element stiffness matrix. Int. J. Numer. Meth. Engng. 19:1983;479-493.
-
(1983)
Int. J. Numer. Meth. Engng
, vol.19
, pp. 479-493
-
-
Friberg, P.O.1
-
10
-
-
0022093196
-
Beam elment matrices derived from Vlasov's theory of open thin-walled elastic beams
-
Friberg P.O. Beam elment matrices derived from Vlasov's theory of open thin-walled elastic beams. Int. J. Numer. Meth. Engng. 21:1985;1205-1228.
-
(1985)
Int. J. Numer. Meth. Engng
, vol.21
, pp. 1205-1228
-
-
Friberg, P.O.1
-
12
-
-
0004061872
-
-
Dept. of Computer Science, University of Waterloo, Canada: Symbolic Computation Group and Waterloo Maple Publishing
-
Char B.W., Geddes K.O., Gonnet G.H., Monagan M.B., Watt S.M. Maple reference manual. 5th ed. 1990;Symbolic Computation Group and Waterloo Maple Publishing, Dept. of Computer Science, University of Waterloo, Canada.
-
(1990)
Maple Reference Manual 5th Ed.
-
-
Char, B.W.1
Geddes, K.O.2
Gonnet, G.H.3
Monagan, M.B.4
Watt, S.M.5
-
13
-
-
85010984277
-
Engineering analysis via symbolic computation - A breakthrough
-
Beltzer A.I. Engineering analysis via symbolic computation - a breakthrough. Appl. Mech. Rev. 43:1990;119-127.
-
(1990)
Appl. Mech. Rev.
, vol.43
, pp. 119-127
-
-
Beltzer, A.I.1
|