-
1
-
-
0002161530
-
The Korteweg-de Vries equation is a fully integrable Hamiltonian system (Russian)
-
L.D.Faddeev, V.E.Zakharov, The Korteweg-de Vries equation is a fully integrable Hamiltonian system, (Russian), Functional Analysis and its Appl. 5 (1971), No.4, 18-27.
-
(1971)
Functional Analysis and its Appl.
, vol.5
, Issue.4
, pp. 18-27
-
-
Faddeev, L.D.1
Zakharov, V.E.2
-
2
-
-
0001361222
-
Hamiltonian formalism for one-dimensional systems of the hydrodynamic type and the Bogolubov-Whitham averaging method
-
B.A.Dubrovin, S.P.Novikov, Hamiltonian formalism for one-dimensional systems of the hydrodynamic type and the Bogolubov-Whitham averaging method, Dokl. Akad. Nauk SSSR, 270 (1983) No.4, 781-785.
-
(1983)
Dokl. Akad. Nauk SSSR
, vol.270
, Issue.4
, pp. 781-785
-
-
Dubrovin, B.A.1
Novikov, S.P.2
-
3
-
-
0007257686
-
Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type
-
S.P.Tsarev, Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type. Russian Akad.Sci.Dokl.Math. 282 (1985), No.3, 534-537.
-
(1985)
Russian Akad.Sci.Dokl.Math.
, vol.282
, Issue.3
, pp. 534-537
-
-
Tsarev, S.P.1
-
4
-
-
0000499929
-
Hamiltonian operators of Hydrodynamic type associated with constant curvature metrics
-
translated as Russian Math.Surveys
-
Mokhov O.I., Ferapontov E.V., Hamiltonian operators of Hydrodynamic type associated with constant curvature metrics, Usp.Math.Nauk, v.50, No.3 (1990), 191-192, translated as Russian Math.Surveys.
-
(1990)
Usp.Math.Nauk
, vol.50
, Issue.3
, pp. 191-192
-
-
Mokhov, O.I.1
Ferapontov, E.V.2
-
5
-
-
0142085370
-
Elliptic coordinates and multi-Hamiltonian structures of systems of hydrodynamic type
-
Maxim V.Pavlov, Elliptic coordinates and multi-Hamiltonian structures of systems of hydrodynamic type, Russian Acad.Sci. Dokl.Math. Vol.50 (1995), No.3, 374-377.
-
(1995)
Russian Acad.Sci. Dokl.Math
, vol.50
, Issue.3
, pp. 374-377
-
-
Pavlov, M.V.1
-
6
-
-
0001833648
-
Nonlocal hamiltonian operators of hydrodynamic type: Differential geometry and applications
-
Ferapontov E.V., Nonlocal Hamiltonian Operators of Hydrodynamic Type: Differential Geometry and Applications, Amer. Math. Soc. Transl. (2) Vol.170, 1995.
-
(1995)
Amer. Math. Soc. Transl.
, vol.2
, pp. 170
-
-
Ferapontov, E.V.1
-
7
-
-
0041783248
-
Relationships between differential substitutions and hamiltonian structures of korteweg-de vries equation
-
Maxim V.Pavlov, Relationships between Differential Substitutions and Hamiltonian Structures of Korteweg-de Vries equation. Phys.Lett.A 243 (1998) 295-300.
-
(1998)
Phys.Lett.A
, vol.243
, pp. 295-300
-
-
Pavlov, M.V.1
-
8
-
-
12844259492
-
Differential geometry of symplectic and poisson structures on loop spaces of smooth manifolds, and integrable systems
-
O.I.Mokhov, Differential Geometry of Symplectic and Poisson Structures on Loop Spaces of Smooth manifolds, and Integrable Systems, Proceedings of the Steklov Institute of Mathematics, V.217 (1997), pp.91-125.
-
(1997)
Proceedings of the Steklov Institute of Mathematics
, vol.217
, pp. 91-125
-
-
Mokhov, O.I.1
-
9
-
-
84960363228
-
Prolifiration scheme for Kaup-Boussinesq system
-
A.B.Borisov, M.Pavlov, S.Zykov, Prolifiration scheme for Kaup-Boussinesq system, Physica D 2649 (2001) 1-6.
-
(2001)
Physica D
, vol.2649
, pp. 1-6
-
-
Borisov, A.B.1
Pavlov, M.2
Zykov, S.3
-
10
-
-
0009022512
-
Differential geometry of nonlocal Hamiltonian operators of hydrodynamic type
-
English transl. in Functional Anal. Appl. 25 (1991
-
Ferapontov E.V., Differential geometry of nonlocal Hamiltonian operators of hydrodynamic type, Funktional. Anal. i Prilozhen.25 (1991), No.3, 37-49; English transl. in Functional Anal. Appl. 25 (1991).
-
(1991)
Funktional. Anal. i Prilozhen
, vol.25
, Issue.3
, pp. 37-49
-
-
Ferapontov, E.V.1
-
11
-
-
0040776541
-
Higher Hamiltonian structures on the KdV phase space (the sl2 case)
-
B. Enriquez, A. Orlov, V. Rubtsov, Higher Hamiltonian structures on the KdV phase space (the sl2 case), JETP Letters, 58:8 (1993), 677-83.
-
(1993)
JETP Letters
, vol.58
, Issue.8
, pp. 677-683
-
-
Enriquez, B.1
Orlov, A.2
Rubtsov, V.3
|