-
1
-
-
0030150519
-
Partially supervised clustering for image segmentation
-
Bensaid, A. M., Hall, L. O., Bezdek, J. C., & Clarke, L. P. (1996). Partially supervised clustering for image segmentation. Pattern Recognition, 29:5, 859-871.
-
(1996)
Pattern Recognition
, vol.29
, Issue.5
, pp. 859-871
-
-
Bensaid, A.M.1
Hall, L.O.2
Bezdek, J.C.3
Clarke, L.P.4
-
2
-
-
0003802343
-
-
Wadsworth Inc.
-
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. Wadsworth Inc.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
3
-
-
0030585734
-
Evaluation of gene structure prediction programs
-
Burset, M., & Guigó, R. (1996). Evaluation of gene structure prediction programs. Genomics, 34, 353-367.
-
(1996)
Genomics
, vol.34
, pp. 353-367
-
-
Burset, M.1
Guigó, R.2
-
4
-
-
0002607026
-
Bayesian classification (AutoClass): Theory and results
-
U. M. Fayyad, G. Diatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.). AAAI Press/The MIT Press, Chapt. 6
-
Cheeseman, P., & Stutz, J. (1996). Bayesian classification (AutoClass): Theory and results. In U. M. Fayyad, G. Diatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining (pp. 153-180). AAAI Press/The MIT Press, Chapt. 6.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 153-180
-
-
Cheeseman, P.1
Stutz, J.2
-
5
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society (B), 39:1, 1-38.
-
(1977)
Journal of the Royal Statistical Society (B)
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
6
-
-
85027406031
-
Inductive learning of characteristic concept descriptions from small sets of classified examples
-
[LNAI 784]
-
Emde, W. (1994). Inductive learning of characteristic concept descriptions from small sets of classified examples. In Proc. of European Conference ofMacine Learning, (pp. 103-121). [LNAI 784].
-
(1994)
Proc. of European Conference ofMacine Learning
, pp. 103-121
-
-
Emde, W.1
-
8
-
-
0343442766
-
Knowledge acquisition via incremental conceptual clustering
-
Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2, 139-172.
-
(1987)
Machine Learning
, vol.2
, pp. 139-172
-
-
Fisher, D.H.1
-
9
-
-
0042716981
-
Application of MDL principle to pattern classification problems
-
in Japanese
-
Itoh, S. (1992). Application of MDL principle to pattern classification problems. J. of Japanese Society for Artificial Intelligence, 7:4. 608-614 (in Japanese).
-
(1992)
J. of Japanese Society for Artificial Intelligence
, vol.7
, Issue.4
, pp. 608-614
-
-
Itoh, S.1
-
11
-
-
0344412406
-
Rule formulation based on inductive learning for extraction and classification of diagram symbols
-
in Japanese
-
Kamishima, T., Minoh, M., & Ikeda, K. (1995). Rule formulation based on inductive learning for extraction and classification of diagram symbols. Transactions of The Information Processing Society of Japan, 36:3, 614-626 (in Japanese).
-
(1995)
Transactions of the Information Processing Society of Japan
, vol.36
, Issue.3
, pp. 614-626
-
-
Kamishima, T.1
Minoh, M.2
Ikeda, K.3
-
12
-
-
0034592784
-
Efficient clustering of high-dimensional data sets with application to reference matching
-
McCallum, A., Nigam, K., & Ungar, L. H. (2000). Efficient clustering of high-dimensional data sets with application to reference matching. In Proc. of ACM SIGKDD (pp. 169-178).
-
(2000)
Proc. of ACM SIGKDD
, pp. 169-178
-
-
McCallum, A.1
Nigam, K.2
Ungar, L.H.3
-
13
-
-
0027601654
-
Inferential theory of learning as a conceptual basis for multistrategy learning
-
Michalski, R. S. (1993). Inferential theory of learning as a conceptual basis for multistrategy learning. Machine Learning, 11, 111-151.
-
(1993)
Machine Learning
, vol.11
, pp. 111-151
-
-
Michalski, R.S.1
-
14
-
-
0025389210
-
Boolean feature discovery in empirical learning
-
Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine Learning, 5, 71-99.
-
(1990)
Machine Learning
, vol.5
, pp. 71-99
-
-
Pagallo, G.1
Haussler, D.2
-
15
-
-
38249015975
-
Why progress in machine vision is so slow
-
Pavlidis, T. (1992). Why progress in machine vision is so slow. Pattern Recognition Letters, 13, 221-225.
-
(1992)
Pattern Recognition Letters
, vol.13
, pp. 221-225
-
-
Pavlidis, T.1
-
16
-
-
33744584654
-
Induction of decision trees
-
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
17
-
-
0024627518
-
Inferring decision trees using the minimum description length principle
-
Quinlan, J. R., & Rivest, R. L. (1989). Inferring decision trees using the minimum description length principle. Information and Computation, 80, 227-248.
-
(1989)
Information and Computation
, vol.80
, pp. 227-248
-
-
Quinlan, J.R.1
Rivest, R.L.2
-
18
-
-
84950632109
-
Objective criteria for the evaluation of clustering methods
-
Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. J. of the American Statistical Association, 66, 846-850.
-
(1971)
J. of the American Statistical Association
, vol.66
, pp. 846-850
-
-
Rand, W.M.1
-
19
-
-
0001098776
-
A universal prior for integers and estimation by minimum description length
-
Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length. The Annals of Statistics, 11:2, 416-431.
-
(1983)
The Annals of Statistics
, vol.11
, Issue.2
, pp. 416-431
-
-
Rissanen, J.1
-
21
-
-
0019999522
-
Graph theoretical clustering based on limited neghbourhood sets
-
Urquhart, R. (1982). Graph theoretical clustering based on limited neghbourhood sets. Pattern Recognition, 15:3, 173-187.
-
(1982)
Pattern Recognition
, vol.15
, Issue.3
, pp. 173-187
-
-
Urquhart, R.1
-
24
-
-
0000819141
-
A learning criterion for stochastic rules
-
Yamanishi, K. (1992). A learning criterion for stochastic rules. Machine Learning, 9, 165-203.
-
(1992)
Machine Learning
, vol.9
, pp. 165-203
-
-
Yamanishi, K.1
-
25
-
-
0041593213
-
Introduction to MDL from viewpoints of information theory
-
in Japanese
-
Yamanishi, K., & Han, T. (1992). Introduction to MDL from viewpoints of information theory. J. of Japanese Society for Artificial Intelligence, 7:3, 427-434 (in Japanese).
-
(1992)
J. of Japanese Society for Artificial Intelligence
, vol.7
, Issue.3
, pp. 427-434
-
-
Yamanishi, K.1
Han, T.2
-
26
-
-
0014976008
-
Graph-theoretical methods for detecting and describing gestalt clusters
-
Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. on Computers, 20:1, 68-86.
-
(1971)
IEEE Trans. on Computers
, vol.20
, Issue.1
, pp. 68-86
-
-
Zahn, C.T.1
|