메뉴 건너뛰기




Volumn 53, Issue 3, 2003, Pages 199-233

Learning from Cluster Examples

Author keywords

Clustering; Dot pattern; Image segmentation; Learning from examples

Indexed keywords

ALGORITHMS; DATA REDUCTION; IMAGE SEGMENTATION; VECTORS;

EID: 0345306654     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1026351106797     Document Type: Article
Times cited : (22)

References (26)
  • 1
    • 0030150519 scopus 로고    scopus 로고
    • Partially supervised clustering for image segmentation
    • Bensaid, A. M., Hall, L. O., Bezdek, J. C., & Clarke, L. P. (1996). Partially supervised clustering for image segmentation. Pattern Recognition, 29:5, 859-871.
    • (1996) Pattern Recognition , vol.29 , Issue.5 , pp. 859-871
    • Bensaid, A.M.1    Hall, L.O.2    Bezdek, J.C.3    Clarke, L.P.4
  • 3
    • 0030585734 scopus 로고    scopus 로고
    • Evaluation of gene structure prediction programs
    • Burset, M., & Guigó, R. (1996). Evaluation of gene structure prediction programs. Genomics, 34, 353-367.
    • (1996) Genomics , vol.34 , pp. 353-367
    • Burset, M.1    Guigó, R.2
  • 4
    • 0002607026 scopus 로고    scopus 로고
    • Bayesian classification (AutoClass): Theory and results
    • U. M. Fayyad, G. Diatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.). AAAI Press/The MIT Press, Chapt. 6
    • Cheeseman, P., & Stutz, J. (1996). Bayesian classification (AutoClass): Theory and results. In U. M. Fayyad, G. Diatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining (pp. 153-180). AAAI Press/The MIT Press, Chapt. 6.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 6
    • 85027406031 scopus 로고
    • Inductive learning of characteristic concept descriptions from small sets of classified examples
    • [LNAI 784]
    • Emde, W. (1994). Inductive learning of characteristic concept descriptions from small sets of classified examples. In Proc. of European Conference ofMacine Learning, (pp. 103-121). [LNAI 784].
    • (1994) Proc. of European Conference ofMacine Learning , pp. 103-121
    • Emde, W.1
  • 8
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2, 139-172.
    • (1987) Machine Learning , vol.2 , pp. 139-172
    • Fisher, D.H.1
  • 9
    • 0042716981 scopus 로고
    • Application of MDL principle to pattern classification problems
    • in Japanese
    • Itoh, S. (1992). Application of MDL principle to pattern classification problems. J. of Japanese Society for Artificial Intelligence, 7:4. 608-614 (in Japanese).
    • (1992) J. of Japanese Society for Artificial Intelligence , vol.7 , Issue.4 , pp. 608-614
    • Itoh, S.1
  • 11
    • 0344412406 scopus 로고
    • Rule formulation based on inductive learning for extraction and classification of diagram symbols
    • in Japanese
    • Kamishima, T., Minoh, M., & Ikeda, K. (1995). Rule formulation based on inductive learning for extraction and classification of diagram symbols. Transactions of The Information Processing Society of Japan, 36:3, 614-626 (in Japanese).
    • (1995) Transactions of the Information Processing Society of Japan , vol.36 , Issue.3 , pp. 614-626
    • Kamishima, T.1    Minoh, M.2    Ikeda, K.3
  • 12
    • 0034592784 scopus 로고    scopus 로고
    • Efficient clustering of high-dimensional data sets with application to reference matching
    • McCallum, A., Nigam, K., & Ungar, L. H. (2000). Efficient clustering of high-dimensional data sets with application to reference matching. In Proc. of ACM SIGKDD (pp. 169-178).
    • (2000) Proc. of ACM SIGKDD , pp. 169-178
    • McCallum, A.1    Nigam, K.2    Ungar, L.H.3
  • 13
    • 0027601654 scopus 로고
    • Inferential theory of learning as a conceptual basis for multistrategy learning
    • Michalski, R. S. (1993). Inferential theory of learning as a conceptual basis for multistrategy learning. Machine Learning, 11, 111-151.
    • (1993) Machine Learning , vol.11 , pp. 111-151
    • Michalski, R.S.1
  • 14
    • 0025389210 scopus 로고
    • Boolean feature discovery in empirical learning
    • Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning. Machine Learning, 5, 71-99.
    • (1990) Machine Learning , vol.5 , pp. 71-99
    • Pagallo, G.1    Haussler, D.2
  • 15
    • 38249015975 scopus 로고
    • Why progress in machine vision is so slow
    • Pavlidis, T. (1992). Why progress in machine vision is so slow. Pattern Recognition Letters, 13, 221-225.
    • (1992) Pattern Recognition Letters , vol.13 , pp. 221-225
    • Pavlidis, T.1
  • 16
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 17
    • 0024627518 scopus 로고
    • Inferring decision trees using the minimum description length principle
    • Quinlan, J. R., & Rivest, R. L. (1989). Inferring decision trees using the minimum description length principle. Information and Computation, 80, 227-248.
    • (1989) Information and Computation , vol.80 , pp. 227-248
    • Quinlan, J.R.1    Rivest, R.L.2
  • 18
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. J. of the American Statistical Association, 66, 846-850.
    • (1971) J. of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 19
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by minimum description length
    • Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length. The Annals of Statistics, 11:2, 416-431.
    • (1983) The Annals of Statistics , vol.11 , Issue.2 , pp. 416-431
    • Rissanen, J.1
  • 21
    • 0019999522 scopus 로고
    • Graph theoretical clustering based on limited neghbourhood sets
    • Urquhart, R. (1982). Graph theoretical clustering based on limited neghbourhood sets. Pattern Recognition, 15:3, 173-187.
    • (1982) Pattern Recognition , vol.15 , Issue.3 , pp. 173-187
    • Urquhart, R.1
  • 24
    • 0000819141 scopus 로고
    • A learning criterion for stochastic rules
    • Yamanishi, K. (1992). A learning criterion for stochastic rules. Machine Learning, 9, 165-203.
    • (1992) Machine Learning , vol.9 , pp. 165-203
    • Yamanishi, K.1
  • 25
    • 0041593213 scopus 로고
    • Introduction to MDL from viewpoints of information theory
    • in Japanese
    • Yamanishi, K., & Han, T. (1992). Introduction to MDL from viewpoints of information theory. J. of Japanese Society for Artificial Intelligence, 7:3, 427-434 (in Japanese).
    • (1992) J. of Japanese Society for Artificial Intelligence , vol.7 , Issue.3 , pp. 427-434
    • Yamanishi, K.1    Han, T.2
  • 26
    • 0014976008 scopus 로고
    • Graph-theoretical methods for detecting and describing gestalt clusters
    • Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. on Computers, 20:1, 68-86.
    • (1971) IEEE Trans. on Computers , vol.20 , Issue.1 , pp. 68-86
    • Zahn, C.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.