메뉴 건너뛰기




Volumn 56, Issue 2, 2004, Pages 213-226

Solutions for a quasilinear Schrödinger equation: A dual approach

Author keywords

Minimax methods; Quasilinear Schr dinger equations

Indexed keywords

INTEGRATION; MATHEMATICAL TRANSFORMATIONS; SET THEORY; THEOREM PROVING;

EID: 0345306218     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2003.09.008     Document Type: Article
Times cited : (542)

References (12)
  • 1
    • 0000061307 scopus 로고
    • Equations de Champs scalaires euclidiens non linéaires dans le plan
    • Berestycki H., Gallouët T., Kavian O. Equations de Champs scalaires euclidiens non linéaires dans le plan. C.R. Acad. Sci. Paris Ser. I Math. 297(5):1983;307-310.
    • (1983) C.R. Acad. Sci. Paris Ser. I Math. , vol.297 , Issue.5 , pp. 307-310
    • Berestycki, H.1    Gallouët, T.2    Kavian, O.3
  • 3
    • 0035500314 scopus 로고    scopus 로고
    • Electron self-trapping in a discrete two-dimensional lattice
    • Brizkik L., Eremko A., Piette B., Zakrzewski W.J. Electron self-trapping in a discrete two-dimensional lattice. Physica D. 159:2001;71-90.
    • (2001) Physica D , vol.159 , pp. 71-90
    • Brizkik, L.1    Eremko, A.2    Piette, B.3    Zakrzewski, W.J.4
  • 4
    • 0344722161 scopus 로고    scopus 로고
    • Stability of standing waves for a quasilinear Schrödinger equation in space dimension 2
    • Colin M. Stability of standing waves for a quasilinear Schrödinger equation in space dimension 2. Adv. Differential Equations. 8(1):2003;1-28.
    • (2003) Adv. Differential Equations , vol.8 , Issue.1 , pp. 1-28
    • Colin, M.1
  • 7
    • 0037321773 scopus 로고    scopus 로고
    • Soliton solutions for quasilinear Schrödinger equations
    • Liu J.-Q., Wang Z.-Q. Soliton solutions for quasilinear Schrödinger equations. Proc. Amer. Math. Soc. 131:2003;441-448.
    • (2003) Proc. Amer. Math. Soc. , vol.131 , pp. 441-448
    • Liu, J.-Q.1    Wang, Z.-Q.2
  • 8
    • 0037455313 scopus 로고    scopus 로고
    • Soliton solutions for quasilinear Schrödinger equations, II
    • Liu J.-Q., Wang Y.-Q., Wang Z.-Q. Soliton solutions for quasilinear Schrödinger equations, II. J. Differential Equation. 187:2003;473-493.
    • (2003) J. Differential Equation , vol.187 , pp. 473-493
    • Liu, J.-Q.1    Wang, Y.-Q.2    Wang, Z.-Q.3
  • 10
    • 85046983805 scopus 로고    scopus 로고
    • A note on a mountain pass characterization of least energy solutions
    • to appear
    • L. Jeanjean, K. Tanaka, A note on a mountain pass characterization of least energy solutions, Adv. Nonlinear Studies, to appear.
    • Adv. Nonlinear Studies
    • Jeanjean, L.1    Tanaka, K.2
  • 11
    • 85030707196 scopus 로고
    • The concentration-compactness principle in the calculus of variations. The locally compact case. Part I and II
    • Lions P.L. The concentration-compactness principle in the calculus of variations. The locally compact case. Part I and II. Ann. Inst. H. Poincaré, Anal. Non Lineaire. 1:1984;109-145 and 223-283.
    • (1984) Ann. Inst. H. Poincaré, Anal. Non Lineaire , vol.1 , pp. 109-145
    • Lions, P.L.1
  • 12
    • 0036556880 scopus 로고    scopus 로고
    • On the existence of soliton solutions to quasilinear Schrödinger equations
    • Poppenberg M., Schmitt K., Wang Z.-Q. On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. 14:2002;329-344.
    • (2002) Calc. Var. , vol.14 , pp. 329-344
    • Poppenberg, M.1    Schmitt, K.2    Wang, Z.-Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.