-
1
-
-
0000153785
-
Low-dimensional behaviour in the complex Ginzburg - Landau equation
-
C. Doering, J. Gibbon, D. Holm, B. Nicolaenko, Low-dimensional behaviour in the complex Ginzburg - Landau equation, Nonlinearity 1 (1988) 279-309.
-
(1988)
Nonlinearity
, vol.1
, pp. 279-309
-
-
Doering, C.1
Gibbon, J.2
Holm, D.3
Nicolaenko, B.4
-
2
-
-
0344147558
-
New results in mathematical and statistical hydrodynamics
-
334 (in Russian)
-
W. E, Y. Sinai, New results in mathematical and statistical hydrodynamics, Uspekhi Mat. Nauk 55(4(334)) (2000) 25-58 (in Russian).
-
(2000)
Uspekhi Mat. Nauk
, vol.55
, Issue.4
, pp. 25-58
-
-
Sinai, W.E.Y.1
-
3
-
-
33746636159
-
Gevrey class regularity for the solutions of the Navier-Stokes equations
-
C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal. 87 (2) (1989) 359-369.
-
(1989)
J. Funct. Anal.
, vol.87
, Issue.2
, pp. 359-369
-
-
Foias, C.1
Temam, R.2
-
4
-
-
0004317158
-
-
Springer, Berlin, Heidelberg
-
E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I, Nonstiff Problems, Springer, Berlin, Heidelberg, 1987.
-
(1987)
Solving Ordinary Differential Equations I, Nonstiff Problems
-
-
Hairer, E.1
Nørsett, S.P.2
Wanner, G.3
-
5
-
-
0003304963
-
Geometric Theory of Semilinear Parabolic Equations
-
Springer, Berlin
-
D. Henry, Geometric Theory of Semilinear Parabolic Equations, in: Lecture Notes in Mathematics, Vol. 840, Springer, Berlin, 1981.
-
(1981)
Lecture Notes in Mathematics
, vol.840
-
-
Henry, D.1
-
6
-
-
0003146128
-
Fourier expansions of the solutions of the Navier-Stokes equations and their exponential decay rate
-
Gauthier - Villars, Montrouge
-
H.-O. Kreiss, Fourier expansions of the solutions of the Navier-Stokes equations and their exponential decay rate, in: Analyse Mathmatique et Applications, Gauthier - Villars, Montrouge, 1988, pp. 245-262.
-
(1988)
Analyse Mathmatique et Applications
, pp. 245-262
-
-
Kreiss, H.-O.1
-
7
-
-
22844453762
-
An elementary proof of the existence and uniqueness theorem for Navier-Stokes equations
-
J. Mattingly, Y. Sinai, An elementary proof of the existence and uniqueness theorem for Navier-Stokes equations, Comm. in Contemporary Math. 1 (4) (1999) 497-516.
-
(1999)
Comm. in Contemporary Math.
, vol.1
, Issue.4
, pp. 497-516
-
-
Mattingly, J.1
Sinai, Y.2
-
8
-
-
84876643850
-
Trapping regions and an ODE-type proof of an existence and uniqueness for Navier-Stokes equations with periodic boundary conditions on the plane
-
see also submitted for publication
-
P. Zgliczynski, Trapping regions and an ODE-type proof of an existence and uniqueness for Navier-Stokes equations with periodic boundary conditions on the plane, Univ. Iag. Acta Math., see also http://www.im.uj.edu.pl/~zgliczyn, submitted for publication.
-
Univ. Iag. Acta Math.
-
-
Zgliczynski, P.1
-
9
-
-
0344578972
-
Rigorous numerics for partial differential equations: The Kuramoto-Sivashinsky equation
-
P. Zgliczynski, K. Mischaikow, Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation, Found. Comput. Math. 1 (2001) 255-288.
-
(2001)
Found. Comput. Math.
, vol.1
, pp. 255-288
-
-
Zgliczynski, P.1
Mischaikow, K.2
|