메뉴 건너뛰기




Volumn 119, Issue 3, 2003, Pages 535-552

Convergence and error bound of a method for solving variational inequality problems via the generalized D-gap function

Author keywords

Error bound estimation; Generalized D gap function; Global convergence; Unconstrained optimization; Variational inequality problems

Indexed keywords

ERRORS; OPTIMIZATION; VARIATIONAL TECHNIQUES;

EID: 0345095039     PISSN: 00223239     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:JOTA.0000006688.13248.04     Document Type: Article
Times cited : (20)

References (12)
  • 1
    • 0344704362 scopus 로고
    • Finite-dimentional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms, and applications
    • HARKER, P. T., and PANG, J. S., Finite-Dimentional Variational Inequality and Nonlinear Complementarity Problems: A Survey of Theory, Algorithms, and Applications, Mathematical Programming, Vol. 48, pp. 161-220, 1990.
    • (1990) Mathematical Programming , vol.48 , pp. 161-220
    • Harker, P.T.1    Pang, J.S.2
  • 2
    • 0003000071 scopus 로고
    • Complementarity problems
    • Edited by R. Horst and P. Pardalos, Kluwer Academic Publishers, Norwell, Massachusetts
    • PANG, J. S., Complementarity Problems, Handbook of Global Optimization, Edited by R. Horst and P. Pardalos, Kluwer Academic Publishers, Norwell, Massachusetts, 1994.
    • (1994) Handbook of Global Optimization
    • Pang, J.S.1
  • 3
    • 0031352141 scopus 로고    scopus 로고
    • Engineering and economic applications of complementarity problems
    • FERRIS, M. C., and PANG, J. S., Engineering and Economic Applications of Complementarity Problems, SIAM Review, Vol. 39, pp. 699-713, 1997.
    • (1997) SIAM Review , vol.39 , pp. 699-713
    • Ferris, M.C.1    Pang, J.S.2
  • 4
    • 0002358032 scopus 로고    scopus 로고
    • Merit functions for variational inequality and complementarity problems
    • Edited by G. Di Pillo and F. Giannessi, Plenum Press, New York, NY
    • FUKUSHIMA, M., Merit Functions for Variational Inequality and Complementarity Problems, Nonlinear Optimization and Applications, Edited by G. Di Pillo and F. Giannessi, Plenum Press, New York, NY, pp. 155-170, 1996.
    • (1996) Nonlinear Optimization and Applications , pp. 155-170
    • Fukushima, M.1
  • 5
    • 0001070251 scopus 로고    scopus 로고
    • Equivalence of variational inquality problems to unconstrained optimization
    • PENG, J. M., Equivalence of Variational Inquality Problems to Unconstrained Optimization, Mathematical Programming, Vol. 78, pp. 347-355, 1997.
    • (1997) Mathematical Programming , vol.78 , pp. 347-355
    • Peng, J.M.1
  • 9
    • 0026763569 scopus 로고
    • Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems
    • FUKUSHIMA, M., Equivalent Differentiable Optimization Problems and Descent Methods for Asymmetric Variational Inequality Problems, Mathematical Programming, Vol. 53, pp. 99-110, 1992.
    • (1992) Mathematical Programming , vol.53 , pp. 99-110
    • Fukushima, M.1
  • 10
    • 0027664261 scopus 로고
    • A general descent framework for the monotone variational inequality problem
    • WU, J. H., FLORIAN, M., and MARCOTTE, P., A General Descent Framework for the Monotone Variational Inequality Problem, Mathematical Programming, Vol. 61, pp. 281-300, 1993.
    • (1993) Mathematical Programming , vol.61 , pp. 281-300
    • Wu, J.H.1    Florian, M.2    Marcotte, P.3
  • 11
    • 0030737013 scopus 로고    scopus 로고
    • Equivalent unconstrained minimization and global error bounds for variational inequality problems
    • YAMASHITA, N., and FUKUSHIMA, M., Equivalent Unconstrained Minimization and Global Error Bounds for Variational Inequality Problems, SIAM Journal on Control and Optimization, Vol. 35, pp. 273-284, 1997.
    • (1997) SIAM Journal on Control and Optimization , vol.35 , pp. 273-284
    • Yamashita, N.1    Fukushima, M.2
  • 12
    • 0000860428 scopus 로고    scopus 로고
    • A hybrid newton method for solving the variational inequality problem via the D-gap function
    • PENG, J. M., and FUKUSHIMA, M., A Hybrid Newton Method for Solving the Variational Inequality Problem via the D-Gap Function, Mathematical Programming, Vol. 86, pp. 367-386, 1999.
    • (1999) Mathematical Programming , vol.86 , pp. 367-386
    • Peng, J.M.1    Fukushima, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.