메뉴 건너뛰기




Volumn 8, Issue 6, 2003, Pages 651-669

Dynamics of a Chain of Springs with Nonconvex Potential Energy

Author keywords

Nonconvex potential energy; Relaxation Oscillation Theory; Springs

Indexed keywords

COMPUTER SIMULATION; ELASTICITY; PERTURBATION TECHNIQUES; POTENTIAL ENERGY; RELAXATION OSCILLATORS; SYSTEM STABILITY; THEOREM PROVING; VISCOSITY;

EID: 0344945506     PISSN: 10812865     EISSN: None     Source Type: Journal    
DOI: 10.1177/1081286503031176     Document Type: Article
Times cited : (6)

References (16)
  • 1
    • 0016569455 scopus 로고
    • Equilibrium of bars
    • Ericksen, J. L.: Equilibrium of bars. J. Elasticity, 5, 191-201 (1975).
    • (1975) J. Elasticity , vol.5 , pp. 191-201
    • Ericksen, J.L.1
  • 3
    • 0001693540 scopus 로고
    • Hysteresis in a discrete system of possibly interacting elements with a double well energy
    • Fedelich, B. and Zanzotto, G.: Hysteresis in a discrete system of possibly interacting elements with a double well energy. J. Nonlinear Sci., 2, 319-342 (1992).
    • (1992) J. Nonlinear Sci. , vol.2 , pp. 319-342
    • Fedelich, B.1    Zanzotto, G.2
  • 4
    • 0001925167 scopus 로고    scopus 로고
    • Mechanics of a discrete chain with bi-stable elements
    • Puglisi, G. and Truskinovsky, L.: Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Solids, 48, 1-27 (2000).
    • (2000) J. Mech. Phys. Solids , vol.48 , pp. 1-27
    • Puglisi, G.1    Truskinovsky, L.2
  • 5
    • 0035202323 scopus 로고    scopus 로고
    • Dynamics of chains with non monotone stress-strain relations. I: Model and numerical experiments
    • Balk, A., Cherkaev, A. and Slepyan, L.: Dynamics of chains with non monotone stress-strain relations. I: Model and numerical experiments. J. Mech. Phys. Solids, 49, 131-148 (2001).
    • (2001) J. Mech. Phys. Solids , vol.49 , pp. 131-148
    • Balk, A.1    Cherkaev, A.2    Slepyan, L.3
  • 6
    • 0035198550 scopus 로고    scopus 로고
    • Dynamics of chains with non monotone stress-strain relations. II: Nonlinear waves and waves of phase transitions
    • Balk, A., Cherkaev, A. and Slepyan, L.: Dynamics of chains with non monotone stress-strain relations. II: Nonlinear waves and waves of phase transitions. J. Mech. Phys. Solids, 49, 149-171 (2001).
    • (2001) J. Mech. Phys. Solids , vol.49 , pp. 149-171
    • Balk, A.1    Cherkaev, A.2    Slepyan, L.3
  • 7
    • 0000533680 scopus 로고    scopus 로고
    • Hysteresis and stick-slip motion of phase boundaries in dynamic models of phase transitions
    • Vainchtein, A. and Rosakis, P.: Hysteresis and stick-slip motion of phase boundaries in dynamic models of phase transitions. J. Nonlinear Sci., 9, 697-719 (1999).
    • (1999) J. Nonlinear Sci. , vol.9 , pp. 697-719
    • Vainchtein, A.1    Rosakis, P.2
  • 10
    • 0018506677 scopus 로고
    • Slowly varying jump and transition phenomena associated with algebraic bifurcation problems
    • Haberman, R.: Slowly varying jump and transition phenomena associated with algebraic bifurcation problems. SIAM J. Appl. Math., 37, 69-106 (1976).
    • (1976) SIAM J. Appl. Math. , vol.37 , pp. 69-106
    • Haberman, R.1
  • 11
    • 0030167803 scopus 로고    scopus 로고
    • Slow passage through a pitchfork bifurcation
    • Marée, G. J. M.: Slow passage through a pitchfork bifurcation. SIAM J. Appl. Math., 3, 889-918 (1996).
    • (1996) SIAM J. Appl. Math. , vol.3 , pp. 889-918
    • Marée, G.J.M.1
  • 12
    • 0042221340 scopus 로고    scopus 로고
    • The pulled Frenkel-Kontorova chain
    • Slijepevic, S.: The pulled Frenkel-Kontorova chain. Nonlinearity, 11, 923-948 (1998).
    • (1998) Nonlinearity , vol.11 , pp. 923-948
    • Slijepevic, S.1
  • 13
    • 0034172565 scopus 로고    scopus 로고
    • Secular stability and total stability
    • Salvadori, L. and Visentin, F.: Secular stability and total stability. Nonlinear Anal., 40, 549-564 (2000).
    • (2000) Nonlinear Anal. , vol.40 , pp. 549-564
    • Salvadori, L.1    Visentin, F.2
  • 16
    • 0010995817 scopus 로고
    • Constrained equations: A study of implicit differential equations and their discontinuous solutions
    • Springer, Berlin
    • Takens, F.: Constrained equations: a study of implicit differential equations and their discontinuous solutions, in Lecture Notes in Mathematics, vol. 525, Springer, Berlin, 143-243 (1976).
    • (1976) Lecture Notes in Mathematics , vol.525 , pp. 143-243
    • Takens, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.