메뉴 건너뛰기




Volumn 195, Issue 2, 2003, Pages 380-397

Uniqueness and nondegeneracy for some nonlinear elliptic problems in a ball

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0344685552     PISSN: 00220396     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0022-0396(02)00194-8     Document Type: Article
Times cited : (32)

References (26)
  • 1
    • 21844495820 scopus 로고
    • An elementary proof of the uniqueness of positive radial solutions of a quasilinear Dirichlet problem
    • A. Adimurthi, S.L. Yadava, An elementary proof of the uniqueness of positive radial solutions of a quasilinear Dirichlet problem, Arch. Rational Mech. Anal. 127 (3) (1994) 219-229.
    • (1994) Arch. Rational Mech. Anal. , vol.127 , Issue.3 , pp. 219-229
    • Adimurthi, A.1    Yadava, S.L.2
  • 2
    • 34548350707 scopus 로고
    • Dual variational methods in critical points theory and applications
    • A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal. 14 (1973) 349-381.
    • (1973) J. Funct. Anal. , vol.14 , pp. 349-381
    • Ambrosetti, A.1    Rabinowitz, P.2
  • 3
    • 0008836753 scopus 로고    scopus 로고
    • Radial symmetry for nonnegative solutions of semilinear elliptic equations involving the p-Laplacian
    • (Pont-Mousson, 1997), Pitman Research Notes in Mathematics Series, Vol. 383, Longman, Harlow
    • F. Brock, Radial symmetry for nonnegative solutions of semilinear elliptic equations involving the p-Laplacian, Progress in Partial Differential Equations, Vol. 1 (Pont-Mousson, 1997), Pitman Research Notes in Mathematics Series, Vol. 383, Longman, Harlow, 1998, pp. 46-57.
    • (1998) Progress in Partial Differential Equations , vol.1 , pp. 46-57
    • Brock, F.1
  • 4
    • 0015249887 scopus 로고
    • 3 = 0 and a variational characterization of other solutions
    • 3 = 0 and a variational characterization of other solutions, Arch. Rational Mech. Anal. 46 (1972) 81-95.
    • (1972) Arch. Rational Mech. Anal. , vol.46 , pp. 81-95
    • Coffman, C.V.1
  • 5
    • 0015746829 scopus 로고
    • Bifurcation, perturbation from simple eigenvalues and linearized stability
    • M.G. Crandall, P.H. Rabinowitz, Bifurcation, perturbation from simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973) 161-180.
    • (1973) Arch. Rational Mech. Anal. , vol.52 , pp. 161-180
    • Crandall, M.G.1    Rabinowitz, P.H.2
  • 6
    • 0005437692 scopus 로고    scopus 로고
    • Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle
    • L. Damascelli, M. Grossi, F. Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (5) (1999) 631-652.
    • (1999) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.16 , Issue.5 , pp. 631-652
    • Damascelli, L.1    Grossi, M.2    Pacella, F.3
  • 8
    • 0010864095 scopus 로고    scopus 로고
    • Monotonicity and symmetry results for p-Laplace equations and applications
    • L. Damascelli, F. Pacella, Monotonicity and symmetry results for p-Laplace equations and applications, Adv. Differential Equations 5 (7-9) (2000) 1179-1200.
    • (2000) Adv. Differential Equations , vol.5 , Issue.7-9 , pp. 1179-1200
    • Damascelli, L.1    Pacella, F.2
  • 9
    • 0001410150 scopus 로고    scopus 로고
    • Uniqueness theorems for positive radial solutions of quasilnear elliptic equations in a ball
    • L. Erbe, M. Tang, Uniqueness theorems for positive radial solutions of quasilnear elliptic equations in a ball, J. Differential Equations 138 (2) (1997) 351-379.
    • (1997) J. Differential Equations , vol.138 , Issue.2 , pp. 351-379
    • Erbe, L.1    Tang, M.2
  • 11
    • 34250271532 scopus 로고
    • Symmetry and related properties via the maximum principle
    • B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (3) (1979) 209-243.
    • (1979) Comm. Math. Phys. , vol.68 , Issue.3 , pp. 209-243
    • Gidas, B.1    Ni, W.M.2    Nirenberg, L.3
  • 12
    • 84980182383 scopus 로고
    • Global and local behavior of positive solutions of nonlinear elliptic equations
    • B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (4) (1981) 525-598.
    • (1981) Comm. Pure Appl. Math. , vol.34 , Issue.4 , pp. 525-598
    • Gidas, B.1    Spruck, J.2
  • 13
    • 84963187713 scopus 로고
    • Symmetry of positive solutions of a quasilinear elliptic equation via isoperimetric inequalities
    • S. Kesavan, F. Pacella, Symmetry of positive solutions of a quasilinear elliptic equation via isoperimetric inequalities, Appl. Anal. 54 (1-2) (1994) 27-37.
    • (1994) Appl. Anal. , vol.54 , Issue.1-2 , pp. 27-37
    • Kesavan, S.1    Pacella, F.2
  • 15
    • 84972508309 scopus 로고
    • Uniqueness of the positive solution of Δu + f (u) = 0 in an annulus
    • M. K. Kwong, L.Q. Zhang, Uniqueness of the positive solution of Δu + f (u) = 0 in an annulus, Differential Integral Equations 4 (3) (1991) 583-599.
    • (1991) Differential Integral Equations , vol.4 , Issue.3 , pp. 583-599
    • Kwong, M.K.1    Zhang, L.Q.2
  • 16
    • 84966214197 scopus 로고
    • A counterexample to the nodal domain conjecture and a related semilinear equation
    • C.S. Lin, W.M. Ni, A counterexample to the nodal domain conjecture and a related semilinear equation, Proc. Amer. Math. Soc. 102 (2) (1988) 271-277.
    • (1988) Proc. Amer. Math. Soc. , vol.102 , Issue.2 , pp. 271-277
    • Lin, C.S.1    Ni, W.M.2
  • 18
    • 0001602653 scopus 로고    scopus 로고
    • Exact multiplicity of positive solutions for a class of semilinear problems
    • Ouyang, J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems, J. Differential Equations 146(1) (1998) 121-156.
    • (1998) J. Differential Equations , vol.146 , Issue.1 , pp. 121-156
    • Ouyang, A.1    Shi, J.2
  • 21
    • 0001733339 scopus 로고    scopus 로고
    • Uniqueness of ground states for quasilinear elliptic operators
    • P. Pucci, J. Serrin, Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J. 47 (2) (1998) 501-528.
    • (1998) Indiana Univ. Math. J. , vol.47 , Issue.2 , pp. 501-528
    • Pucci, P.1    Serrin, J.2
  • 23
    • 0000820023 scopus 로고    scopus 로고
    • Uniqueness of ground states for quasilinear elliptic equations
    • J. Serrin, M. Tang, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J. 49 (3) (2000) 897-923.
    • (2000) Indiana Univ. Math. J. , vol.49 , Issue.3 , pp. 897-923
    • Serrin, J.1    Tang, M.2
  • 24
    • 0345441061 scopus 로고    scopus 로고
    • Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations
    • to appear
    • J. Serrin, H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations, 2002, to appear.
    • (2002)
    • Serrin, J.1    Zou, H.2
  • 25
    • 84972503037 scopus 로고
    • Uniqueness of solutions of nonlinear Dirichlet problems
    • P.N. Srikanth, Uniqueness of solutions of nonlinear Dirichlet problems, Differential Integral Equations 6 (3) (1993) 663-670.
    • (1993) Differential Integral Equations , vol.6 , Issue.3 , pp. 663-670
    • Srikanth, P.N.1
  • 26
    • 0001335714 scopus 로고
    • A strong maximum principle for some quasilinear elliptic equations
    • J.L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984) 191-202.
    • (1984) Appl. Math. Optim. , vol.12 , pp. 191-202
    • Vazquez, J.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.