-
1
-
-
21844495820
-
An elementary proof of the uniqueness of positive radial solutions of a quasilinear Dirichlet problem
-
A. Adimurthi, S.L. Yadava, An elementary proof of the uniqueness of positive radial solutions of a quasilinear Dirichlet problem, Arch. Rational Mech. Anal. 127 (3) (1994) 219-229.
-
(1994)
Arch. Rational Mech. Anal.
, vol.127
, Issue.3
, pp. 219-229
-
-
Adimurthi, A.1
Yadava, S.L.2
-
2
-
-
34548350707
-
Dual variational methods in critical points theory and applications
-
A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal. 14 (1973) 349-381.
-
(1973)
J. Funct. Anal.
, vol.14
, pp. 349-381
-
-
Ambrosetti, A.1
Rabinowitz, P.2
-
3
-
-
0008836753
-
Radial symmetry for nonnegative solutions of semilinear elliptic equations involving the p-Laplacian
-
(Pont-Mousson, 1997), Pitman Research Notes in Mathematics Series, Vol. 383, Longman, Harlow
-
F. Brock, Radial symmetry for nonnegative solutions of semilinear elliptic equations involving the p-Laplacian, Progress in Partial Differential Equations, Vol. 1 (Pont-Mousson, 1997), Pitman Research Notes in Mathematics Series, Vol. 383, Longman, Harlow, 1998, pp. 46-57.
-
(1998)
Progress in Partial Differential Equations
, vol.1
, pp. 46-57
-
-
Brock, F.1
-
4
-
-
0015249887
-
3 = 0 and a variational characterization of other solutions
-
3 = 0 and a variational characterization of other solutions, Arch. Rational Mech. Anal. 46 (1972) 81-95.
-
(1972)
Arch. Rational Mech. Anal.
, vol.46
, pp. 81-95
-
-
Coffman, C.V.1
-
5
-
-
0015746829
-
Bifurcation, perturbation from simple eigenvalues and linearized stability
-
M.G. Crandall, P.H. Rabinowitz, Bifurcation, perturbation from simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973) 161-180.
-
(1973)
Arch. Rational Mech. Anal.
, vol.52
, pp. 161-180
-
-
Crandall, M.G.1
Rabinowitz, P.H.2
-
6
-
-
0005437692
-
Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle
-
L. Damascelli, M. Grossi, F. Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (5) (1999) 631-652.
-
(1999)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.16
, Issue.5
, pp. 631-652
-
-
Damascelli, L.1
Grossi, M.2
Pacella, F.3
-
8
-
-
0010864095
-
Monotonicity and symmetry results for p-Laplace equations and applications
-
L. Damascelli, F. Pacella, Monotonicity and symmetry results for p-Laplace equations and applications, Adv. Differential Equations 5 (7-9) (2000) 1179-1200.
-
(2000)
Adv. Differential Equations
, vol.5
, Issue.7-9
, pp. 1179-1200
-
-
Damascelli, L.1
Pacella, F.2
-
9
-
-
0001410150
-
Uniqueness theorems for positive radial solutions of quasilnear elliptic equations in a ball
-
L. Erbe, M. Tang, Uniqueness theorems for positive radial solutions of quasilnear elliptic equations in a ball, J. Differential Equations 138 (2) (1997) 351-379.
-
(1997)
J. Differential Equations
, vol.138
, Issue.2
, pp. 351-379
-
-
Erbe, L.1
Tang, M.2
-
11
-
-
34250271532
-
Symmetry and related properties via the maximum principle
-
B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (3) (1979) 209-243.
-
(1979)
Comm. Math. Phys.
, vol.68
, Issue.3
, pp. 209-243
-
-
Gidas, B.1
Ni, W.M.2
Nirenberg, L.3
-
12
-
-
84980182383
-
Global and local behavior of positive solutions of nonlinear elliptic equations
-
B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (4) (1981) 525-598.
-
(1981)
Comm. Pure Appl. Math.
, vol.34
, Issue.4
, pp. 525-598
-
-
Gidas, B.1
Spruck, J.2
-
13
-
-
84963187713
-
Symmetry of positive solutions of a quasilinear elliptic equation via isoperimetric inequalities
-
S. Kesavan, F. Pacella, Symmetry of positive solutions of a quasilinear elliptic equation via isoperimetric inequalities, Appl. Anal. 54 (1-2) (1994) 27-37.
-
(1994)
Appl. Anal.
, vol.54
, Issue.1-2
, pp. 27-37
-
-
Kesavan, S.1
Pacella, F.2
-
15
-
-
84972508309
-
Uniqueness of the positive solution of Δu + f (u) = 0 in an annulus
-
M. K. Kwong, L.Q. Zhang, Uniqueness of the positive solution of Δu + f (u) = 0 in an annulus, Differential Integral Equations 4 (3) (1991) 583-599.
-
(1991)
Differential Integral Equations
, vol.4
, Issue.3
, pp. 583-599
-
-
Kwong, M.K.1
Zhang, L.Q.2
-
16
-
-
84966214197
-
A counterexample to the nodal domain conjecture and a related semilinear equation
-
C.S. Lin, W.M. Ni, A counterexample to the nodal domain conjecture and a related semilinear equation, Proc. Amer. Math. Soc. 102 (2) (1988) 271-277.
-
(1988)
Proc. Amer. Math. Soc.
, vol.102
, Issue.2
, pp. 271-277
-
-
Lin, C.S.1
Ni, W.M.2
-
18
-
-
0001602653
-
Exact multiplicity of positive solutions for a class of semilinear problems
-
Ouyang, J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems, J. Differential Equations 146(1) (1998) 121-156.
-
(1998)
J. Differential Equations
, vol.146
, Issue.1
, pp. 121-156
-
-
Ouyang, A.1
Shi, J.2
-
19
-
-
0040955540
-
Linear and nonlinear aspects of vortices, the Ginzburg-Landau model
-
Birkhauser, Boston, Inc., Boston, MA
-
F. Pacard, T. Rivière, Linear and nonlinear aspects of vortices, the Ginzburg-Landau model, in: Progress in Nonlinear Differential Equations and their Applications, Vol. 39, Birkhauser, Boston, Inc., Boston, MA, 2000.
-
(2000)
Progress in Nonlinear Differential Equations and Their Applications
, vol.39
-
-
Pacard, F.1
Rivière, T.2
-
21
-
-
0001733339
-
Uniqueness of ground states for quasilinear elliptic operators
-
P. Pucci, J. Serrin, Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J. 47 (2) (1998) 501-528.
-
(1998)
Indiana Univ. Math. J.
, vol.47
, Issue.2
, pp. 501-528
-
-
Pucci, P.1
Serrin, J.2
-
23
-
-
0000820023
-
Uniqueness of ground states for quasilinear elliptic equations
-
J. Serrin, M. Tang, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J. 49 (3) (2000) 897-923.
-
(2000)
Indiana Univ. Math. J.
, vol.49
, Issue.3
, pp. 897-923
-
-
Serrin, J.1
Tang, M.2
-
24
-
-
0345441061
-
Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations
-
to appear
-
J. Serrin, H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations, 2002, to appear.
-
(2002)
-
-
Serrin, J.1
Zou, H.2
-
25
-
-
84972503037
-
Uniqueness of solutions of nonlinear Dirichlet problems
-
P.N. Srikanth, Uniqueness of solutions of nonlinear Dirichlet problems, Differential Integral Equations 6 (3) (1993) 663-670.
-
(1993)
Differential Integral Equations
, vol.6
, Issue.3
, pp. 663-670
-
-
Srikanth, P.N.1
-
26
-
-
0001335714
-
A strong maximum principle for some quasilinear elliptic equations
-
J.L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984) 191-202.
-
(1984)
Appl. Math. Optim.
, vol.12
, pp. 191-202
-
-
Vazquez, J.L.1
|