-
1
-
-
0023985196
-
RSA and Rabin functions: Certain parts are as hard as the whole
-
W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr. RSA and Rabin functions: certain parts are as hard as the whole. SIAM J. Computing, 17:194-209, 1988.
-
(1988)
SIAM J. Computing
, vol.17
, pp. 194-209
-
-
Alexi, W.1
Chor, B.2
Goldreich, O.3
Schnorr, C.P.4
-
3
-
-
0022716288
-
A simple unpredictable pseudo-random number generator
-
L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number generator. SIAM J. Comput., 15(2):364-383, 1986.
-
(1986)
SIAM J. Comput.
, vol.15
, Issue.2
, pp. 364-383
-
-
Blum, L.1
Blum, M.2
Shub, M.3
-
4
-
-
0021522644
-
How to generate cryptographically strong sequences of pseudo-random bits
-
M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. SIAM Journal on Computing, 13(4):850-864, 1984.
-
(1984)
SIAM Journal on Computing
, vol.13
, Issue.4
, pp. 850-864
-
-
Blum, M.1
Micali, S.2
-
5
-
-
0011189534
-
Stronger security proofs for RSA and Rabin bits
-
R. Fischlin and P. Schnorr. Stronger security proofs for RSA and Rabin bits. J. Cryptology, 13:221-244, 2000.
-
(2000)
J. Cryptology
, vol.13
, pp. 221-244
-
-
Fischlin, R.1
Schnorr, P.2
-
6
-
-
84944039864
-
Spectral bounds on general hard core predicates
-
M. Goldmann and A. Russell. Spectral bounds on general hard core predicates. In In Proc. of STACS, pages 614-625, 2000.
-
(2000)
Proc. of STACS
, pp. 614-625
-
-
Goldmann, M.1
Russell, A.2
-
7
-
-
0024868772
-
A hard-core predicate for all one-way functions
-
O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In STOC, 1989.
-
STOC, 1989
-
-
Goldreich, O.1
Levin, L.2
-
9
-
-
0021409284
-
Probabilistic encryption
-
S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28(2):270-299, 1984.
-
(1984)
JCSS
, vol.28
, Issue.2
, pp. 270-299
-
-
Goldwasser, S.1
Micali, S.2
-
12
-
-
0345701852
-
-
private communication
-
R. Impagliazzo. private communication
-
-
-
Impagliazzo, R.1
-
13
-
-
85034862443
-
A pseudo-random bit generator based on elliptic logarithms
-
A. M. Odlyzko, Ed., vol. 263 of Lecture Notes in Computer Science, Springer-Verlag
-
B. S. Kaliski. A pseudo-random bit generator based on elliptic logarithms. In In Advances in Cryptology - CRYPTO '86, A. M. Odlyzko, Ed., vol. 263 of Lecture Notes in Computer Science, Springer-Verlag, volume 263, pages 84-103, 1986.
-
(1986)
Advances in Cryptology - CRYPTO '86
, vol.263
, pp. 84-103
-
-
Kaliski, B.S.1
-
14
-
-
0027869083
-
Learning decision trees using the Fourier spectrum
-
E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum. SICOMP, 22(6):1331-1348, 1993.
-
(1993)
SICOMP
, vol.22
, Issue.6
, pp. 1331-1348
-
-
Kushilevitz, E.1
Mansour, Y.2
-
15
-
-
0023985034
-
The discrete log problem hides O(log N) bits
-
D.L. Long and A. Wigderson. The Discrete Log problem hides O(log N) bits. SIAM J. Comp., 17:363-372, 1988.
-
(1988)
SIAM J. Comp.
, vol.17
, pp. 363-372
-
-
Long, D.L.1
Wigderson, A.2
-
16
-
-
0029292087
-
Randomized interpolation and approximation of sparse polynomials
-
Y. Mansour. Randomized interpolation and approximation of sparse polynomials. SIAM Journal on Computing, 24(2):357-368, 1995.
-
(1995)
SIAM Journal on Computing
, vol.24
, Issue.2
, pp. 357-368
-
-
Mansour, Y.1
-
17
-
-
84955597936
-
All bits in ax + b modp are hard (extended abstract)
-
M. Naslund. All bits in ax + b modp are hard (extended abstract). In In Proc. of CRYPTO '96, pages 114-1128, 1996.
-
(1996)
Proc. of CRYPTO '96
, pp. 114-128
-
-
Naslund, M.1
-
18
-
-
0017930809
-
A method for obtaining digital signatures and public-key cryptosystems
-
R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120-126, 1978.
-
(1978)
Communications of the ACM
, vol.21
, Issue.2
, pp. 120-126
-
-
Rivest, R.L.1
Shamir, A.2
Adelman, L.M.3
-
21
-
-
0344838977
-
-
private communication
-
H. Wee. private communication.
-
-
-
Wee, H.1
|