메뉴 건너뛰기




Volumn 88, Issue 1, 1998, Pages 89-94

A new fractal approach to the clustering of earthquakes: physical fractal

Author keywords

[No Author keywords available]

Indexed keywords

EARTHQUAKE CLUSTERING; FRACTAL ANALYSIS;

EID: 0344505757     PISSN: 00371106     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (8)

References (17)
  • 1
    • 0019367575 scopus 로고
    • A probabilistic synthesis of precursory phenomena
    • D. W. Simpson and P. G. Richards (Editors), American Geophysical Union, Washington, D.C.
    • Aki, K. (1981). A probabilistic synthesis of precursory phenomena, in Earthquake Prediction: An International Review, Maurice Ewing Series, 4, D. W. Simpson and P. G. Richards (Editors), American Geophysical Union, Washington, D.C., 566-574.
    • (1981) Earthquake Prediction: An International Review, Maurice Ewing Series, 4 , pp. 566-574
    • Aki, K.1
  • 2
    • 0027455235 scopus 로고
    • Predictive modeling of the seismic cycle of the greater San Francisco Bay region
    • Bufe, C. G. and D. J. Varnes (1993). Predictive modeling of the seismic cycle of the greater San Francisco Bay region, J. Geophys. Res. 98, no. B6, 9871-9883.
    • (1993) J. Geophys. Res. , vol.98 , Issue.B6 , pp. 9871-9883
    • Bufe, C.G.1    Varnes, D.J.2
  • 5
    • 0027060064 scopus 로고
    • Multifractal analysis of earthquakes
    • Hirabayashi, T., K. Ito, and T. Yoshii (1992). Multifractal analysis of earthquakes, Pageoph 138, 591-610.
    • (1992) Pageoph , vol.138 , pp. 591-610
    • Hirabayashi, T.1    Ito, K.2    Yoshii, T.3
  • 6
    • 0024899991 scopus 로고
    • A correlation between the b value and the fractal dimension of earthquakes
    • Hirata, T. (1989). A correlation between the b value and the fractal dimension of earthquakes, J. Geophys. Res. 94, no. B6, 7507-7514.
    • (1989) J. Geophys. Res. , vol.94 , Issue.B6 , pp. 7507-7514
    • Hirata, T.1
  • 7
    • 0018920734 scopus 로고
    • Spatial distribution of earthquakes: The two-point correlation function
    • Kagan, Y. Y. and L. Knopoff (1980). Spatial distribution of earthquakes: the two-point correlation function, Geophys. J. R. Astr. Soc. 62, 303-320.
    • (1980) Geophys. J. R. Astr. Soc. , vol.62 , pp. 303-320
    • Kagan, Y.Y.1    Knopoff, L.2
  • 8
    • 0019658502 scopus 로고
    • Spatial distribution of earthquakes: The three-point moment function
    • Kagan, Y. Y. (1981a). Spatial distribution of earthquakes: the three-point moment function, Geophys. J. R. Astr. Soc. 67, 697-717.
    • (1981) Geophys. J. R. Astr. Soc. , vol.67 , pp. 697-717
    • Kagan, Y.Y.1
  • 9
    • 0019674959 scopus 로고
    • Spatial distribution of earthquakes: The four-point moment function
    • Kagan, Y. Y. (1981b). Spatial distribution of earthquakes: the four-point moment function, Geophys. J. R. Astr. Soc. 67, 719-733.
    • (1981) Geophys. J. R. Astr. Soc. , vol.67 , pp. 719-733
    • Kagan, Y.Y.1
  • 10
    • 0020863556 scopus 로고
    • The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: The geometrical origin of b-value
    • King, G. (1983). The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: the geometrical origin of b-value, Pure Appl. Geophys. 121, 761-815.
    • (1983) Pure Appl. Geophys. , vol.121 , pp. 761-815
    • King, G.1
  • 12
    • 0012346731 scopus 로고
    • Statistical models for earthquake occurrences and residual analysis for point processes
    • Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes, J. Am. Stat. Assoc. 83, 401.
    • (1988) J. Am. Stat. Assoc. , vol.83 , pp. 401
    • Ogata, Y.1
  • 13
    • 0028830521 scopus 로고
    • Fractal analysis of three-dimensional spatial distributions of earthquakes with a percolation interpretation
    • Robertson, M. C., C. G. Sammis, M. Sahimi, and A. J. Martin (1995). Fractal analysis of three-dimensional spatial distributions of earthquakes with a percolation interpretation, J. Geophys. Res. 100, no. B1, 609-620.
    • (1995) J. Geophys. Res. , vol.100 , Issue.B1 , pp. 609-620
    • Robertson, M.C.1    Sammis, C.G.2    Sahimi, M.3    Martin, A.J.4
  • 14
    • 0000775533 scopus 로고    scopus 로고
    • Discrete scale invariance, complex fractal dimensions, and log-periodic fluctuations in seismicity
    • Saleur, H., C. G. Sammis, and D. Sornette (1996). Discrete scale invariance, complex fractal dimensions, and log-periodic fluctuations in seismicity, J. Geophys. Res. 101, no. B8, 17661-17677.
    • (1996) J. Geophys. Res. , vol.101 , Issue.B8 , pp. 17661-17677
    • Saleur, H.1    Sammis, C.G.2    Sornette, D.3
  • 15
    • 0000846237 scopus 로고
    • A fractal approach to the clustering of earthquakes: Application to the seismicity of the New Hebrides
    • Smalley, R. F., J. L. Chatelain Jr., D. L. Turcotte, and R. Prevot (1987). A fractal approach to the clustering of earthquakes: application to the seismicity of the New Hebrides, Bull. Seism. Soc. Am. 77, 1368-1381.
    • (1987) Bull. Seism. Soc. Am. , vol.77 , pp. 1368-1381
    • Smalley, R.F.1    Chatelain Jr., J.L.2    Turcotte, D.L.3    Prevot, R.4
  • 16
    • 0022830733 scopus 로고
    • A fractal model for crustal deformation
    • Turcotte, D. L. (1986). A fractal model for crustal deformation, Tectonophysics 132, 361-369.
    • (1986) Tectonophysics , vol.132 , pp. 361-369
    • Turcotte, D.L.1
  • 17
    • 51249182998 scopus 로고
    • Some examples of statistical estimation applied to earthquake data. 1. Cyclic Poisson and self-existing models
    • Vere-Jones, D. and T. Ozaki (1982). Some examples of statistical estimation applied to earthquake data. 1. Cyclic Poisson and self-existing models, Ann. Inst. Statist. Math. 34, 189-207.
    • (1982) Ann. Inst. Statist. Math. , vol.34 , pp. 189-207
    • Vere-Jones, D.1    Ozaki, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.