-
1
-
-
0019367575
-
A probabilistic synthesis of precursory phenomena
-
D. W. Simpson and P. G. Richards (Editors), American Geophysical Union, Washington, D.C.
-
Aki, K. (1981). A probabilistic synthesis of precursory phenomena, in Earthquake Prediction: An International Review, Maurice Ewing Series, 4, D. W. Simpson and P. G. Richards (Editors), American Geophysical Union, Washington, D.C., 566-574.
-
(1981)
Earthquake Prediction: An International Review, Maurice Ewing Series, 4
, pp. 566-574
-
-
Aki, K.1
-
2
-
-
0027455235
-
Predictive modeling of the seismic cycle of the greater San Francisco Bay region
-
Bufe, C. G. and D. J. Varnes (1993). Predictive modeling of the seismic cycle of the greater San Francisco Bay region, J. Geophys. Res. 98, no. B6, 9871-9883.
-
(1993)
J. Geophys. Res.
, vol.98
, Issue.B6
, pp. 9871-9883
-
-
Bufe, C.G.1
Varnes, D.J.2
-
3
-
-
0003421261
-
-
Wiley, New York
-
Feller, W. (1968). An Introduction to Probability and Its Applications, Vol. 1, Third Ed., Wiley, New York.
-
(1968)
An Introduction to Probability and Its Applications, Vol. 1, Third Ed.
, vol.1
-
-
Feller, W.1
-
5
-
-
0027060064
-
Multifractal analysis of earthquakes
-
Hirabayashi, T., K. Ito, and T. Yoshii (1992). Multifractal analysis of earthquakes, Pageoph 138, 591-610.
-
(1992)
Pageoph
, vol.138
, pp. 591-610
-
-
Hirabayashi, T.1
Ito, K.2
Yoshii, T.3
-
6
-
-
0024899991
-
A correlation between the b value and the fractal dimension of earthquakes
-
Hirata, T. (1989). A correlation between the b value and the fractal dimension of earthquakes, J. Geophys. Res. 94, no. B6, 7507-7514.
-
(1989)
J. Geophys. Res.
, vol.94
, Issue.B6
, pp. 7507-7514
-
-
Hirata, T.1
-
7
-
-
0018920734
-
Spatial distribution of earthquakes: The two-point correlation function
-
Kagan, Y. Y. and L. Knopoff (1980). Spatial distribution of earthquakes: the two-point correlation function, Geophys. J. R. Astr. Soc. 62, 303-320.
-
(1980)
Geophys. J. R. Astr. Soc.
, vol.62
, pp. 303-320
-
-
Kagan, Y.Y.1
Knopoff, L.2
-
8
-
-
0019658502
-
Spatial distribution of earthquakes: The three-point moment function
-
Kagan, Y. Y. (1981a). Spatial distribution of earthquakes: the three-point moment function, Geophys. J. R. Astr. Soc. 67, 697-717.
-
(1981)
Geophys. J. R. Astr. Soc.
, vol.67
, pp. 697-717
-
-
Kagan, Y.Y.1
-
9
-
-
0019674959
-
Spatial distribution of earthquakes: The four-point moment function
-
Kagan, Y. Y. (1981b). Spatial distribution of earthquakes: the four-point moment function, Geophys. J. R. Astr. Soc. 67, 719-733.
-
(1981)
Geophys. J. R. Astr. Soc.
, vol.67
, pp. 719-733
-
-
Kagan, Y.Y.1
-
10
-
-
0020863556
-
The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: The geometrical origin of b-value
-
King, G. (1983). The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: the geometrical origin of b-value, Pure Appl. Geophys. 121, 761-815.
-
(1983)
Pure Appl. Geophys.
, vol.121
, pp. 761-815
-
-
King, G.1
-
12
-
-
0012346731
-
Statistical models for earthquake occurrences and residual analysis for point processes
-
Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes, J. Am. Stat. Assoc. 83, 401.
-
(1988)
J. Am. Stat. Assoc.
, vol.83
, pp. 401
-
-
Ogata, Y.1
-
13
-
-
0028830521
-
Fractal analysis of three-dimensional spatial distributions of earthquakes with a percolation interpretation
-
Robertson, M. C., C. G. Sammis, M. Sahimi, and A. J. Martin (1995). Fractal analysis of three-dimensional spatial distributions of earthquakes with a percolation interpretation, J. Geophys. Res. 100, no. B1, 609-620.
-
(1995)
J. Geophys. Res.
, vol.100
, Issue.B1
, pp. 609-620
-
-
Robertson, M.C.1
Sammis, C.G.2
Sahimi, M.3
Martin, A.J.4
-
14
-
-
0000775533
-
Discrete scale invariance, complex fractal dimensions, and log-periodic fluctuations in seismicity
-
Saleur, H., C. G. Sammis, and D. Sornette (1996). Discrete scale invariance, complex fractal dimensions, and log-periodic fluctuations in seismicity, J. Geophys. Res. 101, no. B8, 17661-17677.
-
(1996)
J. Geophys. Res.
, vol.101
, Issue.B8
, pp. 17661-17677
-
-
Saleur, H.1
Sammis, C.G.2
Sornette, D.3
-
15
-
-
0000846237
-
A fractal approach to the clustering of earthquakes: Application to the seismicity of the New Hebrides
-
Smalley, R. F., J. L. Chatelain Jr., D. L. Turcotte, and R. Prevot (1987). A fractal approach to the clustering of earthquakes: application to the seismicity of the New Hebrides, Bull. Seism. Soc. Am. 77, 1368-1381.
-
(1987)
Bull. Seism. Soc. Am.
, vol.77
, pp. 1368-1381
-
-
Smalley, R.F.1
Chatelain Jr., J.L.2
Turcotte, D.L.3
Prevot, R.4
-
16
-
-
0022830733
-
A fractal model for crustal deformation
-
Turcotte, D. L. (1986). A fractal model for crustal deformation, Tectonophysics 132, 361-369.
-
(1986)
Tectonophysics
, vol.132
, pp. 361-369
-
-
Turcotte, D.L.1
-
17
-
-
51249182998
-
Some examples of statistical estimation applied to earthquake data. 1. Cyclic Poisson and self-existing models
-
Vere-Jones, D. and T. Ozaki (1982). Some examples of statistical estimation applied to earthquake data. 1. Cyclic Poisson and self-existing models, Ann. Inst. Statist. Math. 34, 189-207.
-
(1982)
Ann. Inst. Statist. Math.
, vol.34
, pp. 189-207
-
-
Vere-Jones, D.1
Ozaki, T.2
|