메뉴 건너뛰기




Volumn 36, Issue 2, 1999, Pages 317-326

Environmental impact prediction using neural network modelling. An example in wildlife damage

Author keywords

Artificial neural network; Cultivated fields; Decision making; Predictive model; Wild boar

Indexed keywords

ARTIFICIAL NEURAL NETWORK; ENVIRONMENTAL IMPACT; PREDICTION; WILDLIFE MANAGEMENT;

EID: 0344436090     PISSN: 00218901     EISSN: None     Source Type: Journal    
DOI: 10.1046/j.1365-2664.1999.00400.x     Document Type: Article
Times cited : (60)

References (32)
  • 1
    • 0030299144 scopus 로고    scopus 로고
    • Stochastic models that predict trouts population densities or biomass on macrohabitat scale
    • Baran, P., Lek. S., Delacoste, M. & Belaud, A. (1996) Stochastic models that predict trouts population densities or biomass on macrohabitat scale. Hydrobiologia, 337, 1-9.
    • (1996) Hydrobiologia , vol.337 , pp. 1-9
    • Baran, P.1    Lek, S.2    Delacoste, M.3    Belaud, A.4
  • 2
    • 0022843649 scopus 로고
    • Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis
    • ter Braak, C.J.F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167-1179.
    • (1986) Ecology , vol.67 , pp. 1167-1179
    • Ter Braak, C.J.F.1
  • 3
    • 0344673338 scopus 로고
    • La limitation des dégâts de sangliers par la pose de clôtures électriques dans le département de la Haute-Marne
    • Breton, D. (1994) La limitation des dégâts de sangliers par la pose de clôtures électriques dans le département de la Haute-Marne. Bulletin Mensuel de l'Office National de la Chasse, 191, 96-100.
    • (1994) Bulletin Mensuel de L'office National de la Chasse , vol.191 , pp. 96-100
    • Breton, D.1
  • 4
    • 0029664143 scopus 로고    scopus 로고
    • Artificial neural network versus multiple linear regression: Predicting P/B ratios from empirical data
    • Brey, T., Jarre-Teichmann, A. & Borlich, O. (1996) Artificial neural network versus multiple linear regression: predicting P/B ratios from empirical data. Marine Ecology Progress in Series, 140, 251-256.
    • (1996) Marine Ecology Progress in Series , vol.140 , pp. 251-256
    • Brey, T.1    Jarre-Teichmann, A.2    Borlich, O.3
  • 5
    • 0002233946 scopus 로고
    • Discussions of the possible use of neural network algorithms in ecological modelling
    • Colasanti, R.L. (1991) Discussions of the possible use of neural network algorithms in ecological modelling. Binary, 3, 13-15.
    • (1991) Binary , vol.3 , pp. 13-15
    • Colasanti, R.L.1
  • 6
    • 0028973870 scopus 로고
    • The potential for computer-aided identification in biodiversity research
    • Edwards, M. & Morse, D.R. (1995) The potential for computer-aided identification in biodiversity research. Trends in Ecology and Evolution, 10, 153-158.
    • (1995) Trends in Ecology and Evolution , vol.10 , pp. 153-158
    • Edwards, M.1    Morse, D.R.2
  • 7
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • Efron, B. (1983) Estimating the error rate of a prediction rule: improvement on cross-validation. Journal of American Statistical Association,78, 316-330.
    • (1983) Journal of American Statistical Association , vol.78 , pp. 316-330
    • Efron, B.1
  • 8
    • 0344052657 scopus 로고    scopus 로고
    • Energy availability and habitat heterogeneity predict global riverine fish diversity
    • Guégan, J.F., Lek, S. & Oberdorff, T. (1997) Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature, 391, 382-384.
    • (1997) Nature , vol.391 , pp. 382-384
    • Guégan, J.F.1    Lek, S.2    Oberdorff, T.3
  • 9
    • 0028177829 scopus 로고
    • Field evaluation of the littoral ecosystem risk assessment model's predictions of the effects of chlorpyrifos
    • Hanratty, M.P. & Stay, F.S. (1994) Field evaluation of the Littoral Ecosystem Risk Assessment Model's predictions of the effects of chlorpyrifos. Journal of Applied Ecology, 31, 439-453.
    • (1994) Journal of Applied Ecology , vol.31 , pp. 439-453
    • Hanratty, M.P.1    Stay, F.S.2
  • 11
    • 0025526046 scopus 로고
    • Multivariate analysis in ecology and systematic: Panacea or Pandora's box ?
    • James, F.C. & McCulloch, C.E. (1990) Multivariate analysis in ecology and systematic: panacea or Pandora's box ? Annual Review of Ecology and Systematics, 21, 129-166.
    • (1990) Annual Review of Ecology and Systematics , vol.21 , pp. 129-166
    • James, F.C.1    McCulloch, C.E.2
  • 12
    • 0030390280 scopus 로고    scopus 로고
    • Feedforward backpropagation neural networks in prediction of farmer risk preference
    • Kastens, T.L. & Featherstone, A.M. (1996) Feedforward backpropagation neural networks in prediction of farmer risk preference. American Journal of Agricultural Economics, 78, 400-415.
    • (1996) American Journal of Agricultural Economics , vol.78 , pp. 400-415
    • Kastens, T.L.1    Featherstone, A.M.2
  • 15
    • 0345535573 scopus 로고
    • Engineering Dissertation. Ecole Nationale d'Ingénieurs des Travaux Agricoles, Dijon, France
    • Laporte, T. (1991) Le Sanglier En Milieu Naturel. Engineering Dissertation. Ecole Nationale d'Ingénieurs des Travaux Agricoles, Dijon, France.
    • (1991) Le Sanglier En Milieu Naturel
    • Laporte, T.1
  • 16
    • 0029661447 scopus 로고    scopus 로고
    • Role of some environmental variables in trout abundance models using neural networks
    • Lek, S., Belaud, A., Baran, P., Dimopoulos, I. & Delacoste, M. (1996a) Role of some environmental variables in trout abundance models using neural networks. Aquatic Living Resources, 9, 23-29.
    • (1996) Aquatic Living Resources , vol.9 , pp. 23-29
    • Lek, S.1    Belaud, A.2    Baran, P.3    Dimopoulos, I.4    Delacoste, M.5
  • 18
    • 0029659994 scopus 로고    scopus 로고
    • Predicting phosphorus concentration and phosphorus load from watershed characteristics using backpropagation neural networks
    • Lek, S., Dimopoulos, I. & Fabre, A. (1996) Predicting phosphorus concentration and phosphorus load from watershed characteristics using backpropagation neural networks. Acta Oecologica, 17, 43-53.
    • (1996) Acta Oecologica , vol.17 , pp. 43-53
    • Lek, S.1    Dimopoulos, I.2    Fabre, A.3
  • 19
    • 34247990255 scopus 로고
    • On the Kolmogorov-Smirnov test for normality with mean and variance unknown
    • Lilliefors, H.W. (1967) On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statisticians Association, 62, 399-402.
    • (1967) Journal of the American Statisticians Association , vol.62 , pp. 399-402
    • Lilliefors, H.W.1
  • 20
    • 0028993801 scopus 로고
    • Scalable decision rules for environmental impact studies: Effect size, type I, and type II errors
    • Mapstone, B.D. (1995) Scalable decision rules for environmental impact studies: effect size, Type I, and Type II errors. Ecological Applications, 5, 401-410.
    • (1995) Ecological Applications , vol.5 , pp. 401-410
    • Mapstone, B.D.1
  • 22
    • 0022471098 scopus 로고
    • Learning representations by back-propagating error
    • Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986) Learning representations by back-propagating error. Nature, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 23
    • 0345104161 scopus 로고
    • Managing moose damage in forest plantations: A deep model of animal behavior on a geographic information system platform
    • Avignon, France, 29 May - 2 June 1989 (abstract and full text)
    • Saarenmaa, H. & Nikula, A. (1989) Managing moose damage in forest plantations: a deep model of animal behavior on a geographic information system platform. 9th International Workshop on Expert Systems and their Applications, Avignon, France, 29 May - 2 June 1989 (abstract and full text).
    • (1989) 9th International Workshop on Expert Systems and Their Applications
    • Saarenmaa, H.1    Nikula, A.2
  • 25
    • 0029662837 scopus 로고    scopus 로고
    • Artificial neural networks on empirical models for estimating phytoplankton production
    • Scardi, M. (1996) Artificial neural networks on empirical models for estimating phytoplankton production. Marine Ecology Progress in Series, 139, 289-299.
    • (1996) Marine Ecology Progress in Series , vol.139 , pp. 289-299
    • Scardi, M.1
  • 29
    • 0345104157 scopus 로고    scopus 로고
    • Neural network models to predict penetration of wild boar into cultivated fields
    • Spitz, F., Lek, S. & Dimopoulos, I. (1996) Neural network models to predict penetration of wild boar into cultivated fields. Journal of Biological Systems, 4, 433-444.
    • (1996) Journal of Biological Systems , vol.4 , pp. 433-444
    • Spitz, F.1    Lek, S.2    Dimopoulos, I.3
  • 30
    • 0003140365 scopus 로고    scopus 로고
    • Neural networks in applied statistics
    • Stern, H.S. (1996) Neural networks in applied statistics. Techmometrics, 38, 205-214.
    • (1996) Techmometrics , vol.38 , pp. 205-214
    • Stern, H.S.1
  • 32
    • 0000778985 scopus 로고
    • Predicting sunspots and exchange rates with connectionist networks
    • (eds M. Casdagli & S. Eubank), Addison-Wesley, Redwood City, USA
    • Weigend, A.S., Huberman, B.A. & Rumelhart, D.E. (1992) Predicting sunspots and exchange rates with connectionist networks. Nonlinear Modelling and Forecasting (eds M. Casdagli & S. Eubank), pp. 395-432. Addison-Wesley, Redwood City, USA.
    • (1992) Nonlinear Modelling and Forecasting , pp. 395-432
    • Weigend, A.S.1    Huberman, B.A.2    Rumelhart, D.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.