-
2
-
-
0032075622
-
Obtaining order in a world of chaos
-
H.D.I. Abarbanel, T.W. Frison, L.S. Tsimring, Obtaining order in a world of chaos, IEEE Signal Process. Mag. 15 (3) (1998) 49-65.
-
(1998)
IEEE Signal Process. Mag.
, vol.15
, Issue.3
, pp. 49-65
-
-
Abarbanel, H.D.I.1
Frison, T.W.2
Tsimring, L.S.3
-
3
-
-
0001576305
-
Local false neighbours and dynamical dimensions from observed chaotic data
-
H.D.I. Abarbanel, M.B. Kennel, Local false neighbours and dynamical dimensions from observed chaotic data, Phys. Rev. E 47 (1993) 3057-3068.
-
(1993)
Phys. Rev. E
, vol.47
, pp. 3057-3068
-
-
Abarbanel, H.D.I.1
Kennel, M.B.2
-
4
-
-
0031139271
-
How to extract Lyapunov exponents from short and noisy time series
-
M. Banbrook, G. Ushaw, S. McLaughlin, How to extract Lyapunov exponents from short and noisy time series, IEEE Trans. Signal Process. 45 (5) (1997) 1378-1382.
-
(1997)
IEEE Trans. Signal Process.
, vol.45
, Issue.5
, pp. 1378-1382
-
-
Banbrook, M.1
Ushaw, G.2
McLaughlin, S.3
-
5
-
-
85030952031
-
-
Mixture density networks, Technical Report NCRG/94/004, Neural Computing Research Group, Aston University, Birmingham, UK
-
C.M. Bishop, Mixture density networks, Technical Report NCRG/94/004, Neural Computing Research Group, Aston University, Birmingham, UK, 1994.
-
(1994)
-
-
Bishop, C.M.1
-
7
-
-
0004311217
-
-
Holden-Day, San Francisco, CA
-
G.E.P. Box, G.M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, CA, 1976.
-
(1976)
Time Series Analysis: Forecasting and Control
-
-
Box, G.E.P.1
Jenkins, G.M.2
-
8
-
-
0003802343
-
-
Wadsworth, Belmont, CA
-
L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees, Wadsworth, Belmont, CA, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
9
-
-
35949009462
-
Computing the Lyapunov spectrum of a dynamical system from an observed time series
-
R. Brown, P. Bryant, H.D.I. Abarbanel, Computing the Lyapunov spectrum of a dynamical system from an observed time series, Phys. Rev. A 43 (6) (1991) 2787-2806.
-
(1991)
Phys. Rev. A
, vol.43
, Issue.6
, pp. 2787-2806
-
-
Brown, R.1
Bryant, P.2
Abarbanel, H.D.I.3
-
10
-
-
45149144372
-
Nonlinear prediction of chaotic time series
-
M. Casdagli, Nonlinear prediction of chaotic time series, Physica D 35 (1989) 335-356.
-
(1989)
Physica D
, vol.35
, pp. 335-356
-
-
Casdagli, M.1
-
11
-
-
84974743850
-
Fuzzy model identification based on cluster estimation
-
S. Chiu, Fuzzy model identification based on cluster estimation, J. Intell. Fuzzy Syst. 2 (3) (1994) 267-278.
-
(1994)
J. Intell. Fuzzy Syst.
, vol.2
, Issue.3
, pp. 267-278
-
-
Chiu, S.1
-
12
-
-
0030196823
-
Comparison of adaptive methods for function estimation from samples
-
V. Cherkassky, D. Gehring, Comparison of adaptive methods for function estimation from samples, IEEE Trans. Neural Networks 7 (4) (1996) 969-984.
-
(1996)
IEEE Trans. Neural Networks
, vol.7
, Issue.4
, pp. 969-984
-
-
Cherkassky, V.1
Gehring, D.2
-
13
-
-
0026097068
-
Constrained topological mapping for nonparametric regression analysis
-
V. Cherkassky, H. Lari-Najafi, Constrained topological mapping for nonparametric regression analysis, Neural Networks 4 (1991) 27-40.
-
(1991)
Neural Networks
, vol.4
, pp. 27-40
-
-
Cherkassky, V.1
Lari-Najafi, H.2
-
14
-
-
0035696162
-
Robust TSK fuzzy modeling for function approximation with outliers
-
C.-C. Chuang, S.-F. Su, S.-S. Chen, Robust TSK fuzzy modeling for function approximation with outliers, IEEE Trans. Fuzzy Syst. 9 (6) (2001) 810-821.
-
(2001)
IEEE Trans. Fuzzy Syst.
, vol.9
, Issue.6
, pp. 810-821
-
-
Chuang, C.-C.1
Su, S.-F.2
Chen, S.-S.3
-
15
-
-
0344974458
-
Computational intelligence in hydroinformatics: A review
-
M. Marinaro, R. Tagliaferri (Eds.), Proceedings of WIRN'99, Springer, Berlin
-
Gb. Cicioni, F. Masulli, Computational intelligence in hydroinformatics: a review, in: M. Marinaro, R. Tagliaferri (Eds.), Proceedings of WIRN'99, Springer, Berlin, 2000.
-
(2000)
-
-
Cicioni, Gb.1
Masulli, F.2
-
18
-
-
84915212583
-
Estimation by the nearest neighbor rule
-
T.M. Cover, Estimation by the nearest neighbor rule, IEEE Trans. Inf. Theory 14 (1968) 50-55.
-
(1968)
IEEE Trans. Inf. Theory
, vol.14
, pp. 50-55
-
-
Cover, T.M.1
-
19
-
-
0024861871
-
Approximation by superposition of a sigmoidal function
-
G. Cybenko, Approximation by superposition of a sigmoidal function, Math. Control Signals Syst. 2 (1989) 303-314.
-
(1989)
Math. Control Signals Syst.
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
21
-
-
34249982739
-
Predicting chaotic time series
-
J.D. Farmer, J.J. Sidorowich, Predicting chaotic time series, Phys. Rev. Lett. 59 (8) (1987) 845-848.
-
(1987)
Phys. Rev. Lett.
, vol.59
, Issue.8
, pp. 845-848
-
-
Farmer, J.D.1
Sidorowich, J.J.2
-
22
-
-
34548696055
-
Independent coordinates for strange attractors from mutual information
-
A.M. Fraser, H.L. Swinney, Independent coordinates for strange attractors from mutual information, Phys. Rev. A 33 (2) (1986) 1134-1140.
-
(1986)
Phys. Rev. A
, vol.33
, Issue.2
, pp. 1134-1140
-
-
Fraser, A.M.1
Swinney, H.L.2
-
23
-
-
0002432565
-
Multivariate adaptive regression splines
-
J.H. Friedman, Multivariate adaptive regression splines, Ann. Stat. 19 (1991) 1-141.
-
(1991)
Ann. Stat.
, vol.19
, pp. 1-141
-
-
Friedman, J.H.1
-
24
-
-
0002109783
-
An overview of predictive learning and function approximation
-
V. Cherkassky, J.H. Friedman, H. Wechsler (Eds.), From Statistics to Neural Networks: Theory and Pattern Recognition Applications, NATO ASI Series F, Springer, Berlin
-
J.H. Friedman, An overview of predictive learning and function approximation, in: V. Cherkassky, J.H. Friedman, H. Wechsler (Eds.), From Statistics to Neural Networks: Theory and Pattern Recognition Applications, NATO ASI Series F, Vol. 136, Springer, Berlin, 1994.
-
(1994)
, vol.136
-
-
Friedman, J.H.1
-
26
-
-
0024866495
-
On the approximate realization of continuous mappings by neural networks
-
K. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks 2 (1989) 183-192.
-
(1989)
Neural Networks
, vol.2
, pp. 183-192
-
-
Funahashi, K.1
-
27
-
-
0005892848
-
Solving inverse problems using an EM approach to density estimation
-
M.C. Mozer, P. Smolensky, D.S. Touretzky, J.L. Elman, A.S. Weigend (Eds.), Proceedings of the 1993 Connectionist Models Summer School, Erlbaum Associates, Hillsdale, NJ
-
Z. Ghahramani, Solving inverse problems using an EM approach to density estimation, in: M.C. Mozer, P. Smolensky, D.S. Touretzky, J.L. Elman, A.S. Weigend (Eds.), Proceedings of the 1993 Connectionist Models Summer School, Erlbaum Associates, Hillsdale, NJ, 1994, pp. 316-323.
-
(1994)
, pp. 316-323
-
-
Ghahramani, Z.1
-
28
-
-
0003413187
-
-
2nd Edition, Prentice-Hall, Englewood Cliffs, NJ
-
S. Haykin, Neural Networks, A Comprehensive Foundation, 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ, 1999.
-
(1999)
Neural Networks, A Comprehensive Foundation
-
-
Haykin, S.1
-
29
-
-
0029191714
-
Detection of signals in chaos
-
S. Haykin, X.B. Li, Detection of signals in chaos, Proc. IEEE 83 (1) (1995) 94-122.
-
(1995)
Proc. IEEE
, vol.83
, Issue.1
, pp. 94-122
-
-
Haykin, S.1
Li, X.B.2
-
31
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989) 359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
32
-
-
0003736432
-
-
Ellis Horwood, Chichester, UK
-
G. Janacek, L. Swift, Time Series Forecasting, Simulation, Applications, Ellis Horwood, Chichester, UK, 1993.
-
(1993)
Time Series Forecasting, Simulation, Applications
-
-
Janacek, G.1
Swift, L.2
-
33
-
-
0003753097
-
-
Prentice-Hall, Upper Saddle River, NJ
-
J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice-Hall, Upper Saddle River, NJ, 1997.
-
(1997)
Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence
-
-
Jang, J.-S.R.1
Sun, C.-T.2
Mizutani, E.3
-
34
-
-
35949006791
-
Determining minimum embedding dimension using a geometrical construction
-
M.B. Kennel, R. Brown, H.D.I. Abarbanel, Determining minimum embedding dimension using a geometrical construction, Phys. Rev. A 45 (1992) 3403-3411.
-
(1992)
Phys. Rev. A
, vol.45
, pp. 3403-3411
-
-
Kennel, M.B.1
Brown, R.2
Abarbanel, H.D.I.3
-
36
-
-
85030940825
-
-
Visual Recurrence Analysis (VRA), Software Version 4.2, November 15, Available from
-
E. Kononov, Visual Recurrence Analysis (VRA), Software Version 4.2, November 15, 1999, Available from: http://pw1.netcom.com/~eugenek.
-
(1999)
-
-
Kononov, E.1
-
37
-
-
0028532753
-
Fuzzy systems as universal approximators
-
B. Kosko, Fuzzy systems as universal approximators, IEEE Trans. Comput. 43 (1994) 1329-1333.
-
(1994)
IEEE Trans. Comput.
, vol.43
, pp. 1329-1333
-
-
Kosko, B.1
-
38
-
-
0017714604
-
Oscillation and chaos in physiological control systems
-
M.C. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science 197 (1977) 287-289.
-
(1977)
Science
, vol.197
, pp. 287-289
-
-
Mackey, M.C.1
Glass, L.2
-
39
-
-
0003290175
-
On the dimension of the compact invariant sets of certain non-linear maps
-
D.A. Rang, L.-S. Young (Eds.), Lecture Notes in Mathematics, Springer, Berlin, Warwick
-
R. Mañé, On the dimension of the compact invariant sets of certain non-linear maps, in: D.A. Rang, L.-S. Young (Eds.), Dynamical Systems and Turbulence, Lecture Notes in Mathematics, Vol. 898, Springer, Berlin, Warwick, 1981, pp. 230-242.
-
(1981)
Dynamical Systems and Turbulence
, vol.898
, pp. 230-242
-
-
Mañé, R.1
-
40
-
-
14644386778
-
Time series forecasting and neural networks
-
Proceedings of IJCNN'99, Washington, DC, USA, July 10-16
-
F. Masulli, L. Studer, Time series forecasting and neural networks, in: Proceedings of IJCNN'99, Washington, DC, USA, July 10-16, 1999.
-
(1999)
-
-
Masulli, F.1
Studer, L.2
-
42
-
-
85030953334
-
Optimisation of Bayesian classifiers by using a splitting hierarchical EM algorithm
-
Proceedings of NC'2000, Berlin, Germany, May 23-26
-
M. Panella, F.M. Frattale Mascioli, A. Rizzi, G. Martinelli, Optimisation of Bayesian classifiers by using a splitting hierarchical EM algorithm, Proceedings of NC'2000, Berlin, Germany, May 23-26, 2000.
-
(2000)
-
-
Panella, M.1
Frattale Mascioli, F.M.2
Rizzi, A.3
Martinelli, G.4
-
43
-
-
0034868603
-
A Constructive EM Approach to Density Estimation for Learning
-
Proceedings of IJCNN 2001, Washington, DC, USA, July 14-19
-
M. Panella, A. Rizzi, F.M. Frattale Mascioli, G. Martinelli, A Constructive EM Approach to Density Estimation for Learning, in: Proceedings of IJCNN 2001, Washington, DC, USA, Vol. 4, July 14-19, 2001, pp. 2608-2613.
-
(2001)
, vol.4
, pp. 2608-2613
-
-
Panella, M.1
Rizzi, A.2
Frattale Mascioli, F.M.3
Martinelli, G.4
-
44
-
-
85030947495
-
Improved time series forecasting by a twofold neural predictor
-
Proceedings of EANN 2001, Cagliari, Italy, July 16-18
-
M. Panella, A. Rizzi, F.M. Frattale Mascioli, G. Martinelli, Improved time series forecasting by a twofold neural predictor, in: Proceedings of EANN 2001, Cagliari, Italy, July 16-18, 2001, pp. 196-203.
-
(2001)
, pp. 196-203
-
-
Panella, M.1
Rizzi, A.2
Frattale Mascioli, F.M.3
Martinelli, G.4
-
45
-
-
0036079166
-
Constructive MoG neural networks for pollution data forecasting
-
Proceedings of IJCNN 2002, Honolulu, Hawaii, USA, May 12-17
-
M. Panella, A. Rizzi, F.M. Frattale Mascioli, G. Martinelli, Constructive MoG neural networks for pollution data forecasting, in: Proceedings of IJCNN 2002, Honolulu, Hawaii, USA, May 12-17, 2002, pp. 417-422.
-
(2002)
, pp. 417-422
-
-
Panella, M.1
Rizzi, A.2
Frattale Mascioli, F.M.3
Martinelli, G.4
-
46
-
-
0003663467
-
-
International Edition, McGraw-Hill, New York
-
A. Papoulis, Probability, Random Variables, and Stochastic Processes, International Edition, McGraw-Hill, New York, 1991.
-
(1991)
Probability, Random Variables, and Stochastic Processes
-
-
Papoulis, A.1
-
47
-
-
0025490985
-
Networks for approximation and learning
-
T. Poggio, F. Girosi, Networks for approximation and learning, Proc. IEEE 78 (9) (1990) 1481-1497.
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
48
-
-
0032203424
-
Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control
-
J.C. Principe, L. Wang, M.A. Motter, Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control, Proc. IEEE 86 (11) (1998) 2240-2258.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2240-2258
-
-
Principe, J.C.1
Wang, L.2
Motter, M.A.3
-
49
-
-
0033075499
-
A deterministic annealing approach for parsimonious design of piecewise regression models
-
A.V. Rao, D.J. Miller, K. Rose, A. Gersho, A deterministic annealing approach for parsimonious design of piecewise regression models, IEEE Trans. Pattern Anal. Mach. Intell. 2 (2) (1999) 159-173.
-
(1999)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.2
, Issue.2
, pp. 159-173
-
-
Rao, A.V.1
Miller, D.J.2
Rose, K.3
Gersho, A.4
-
50
-
-
0028277023
-
Stock performance modeling using neural networks: A comparative study with regression models
-
A.N. Refenes, A. Zapranis, G. Francis, Stock performance modeling using neural networks: a comparative study with regression models, Neural Networks 7 (1994) 375-388.
-
(1994)
Neural Networks
, vol.7
, pp. 375-388
-
-
Refenes, A.N.1
Zapranis, A.2
Francis, G.3
-
51
-
-
0032202775
-
Deterministic annealing for clustering, compression, classification, regression, and related optimization problems
-
K. Rose, Deterministic annealing for clustering, compression, classification, regression, and related optimization problems, Proc. IEEE 86 (11) (1998) 2210-2239.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2210-2239
-
-
Rose, K.1
-
52
-
-
0000779360
-
Detecting strange attractors in turbulence
-
D.A. Rang, L.-S. Young (Eds.), Lecture Notes in Mathematics, Springer, Berlin, Warwick
-
F. Takens, Detecting strange attractors in turbulence, in: D.A. Rang, L.-S. Young (Eds.), Dynamical Systems and Turbulence, Lecture Notes in Mathematics, Vol. 898, Springer, Berlin, Warwick, 1981, pp. 366-381.
-
(1981)
Dynamical Systems and Turbulence
, vol.898
, pp. 366-381
-
-
Takens, F.1
-
53
-
-
0004172718
-
-
Academic Press, San Diego, CA
-
S. Theodoridis, K. Koutroumbas, Pattern Recognition, Academic Press, San Diego, CA, 1998.
-
(1998)
Pattern Recognition
-
-
Theodoridis, S.1
Koutroumbas, K.2
-
54
-
-
0003664883
-
-
W.H. Winston, Washington, DC
-
A.N. Tikhonov, V.Y. Arsenio, Solutions of Ill-posed Problems, W.H. Winston, Washington, DC, 1977.
-
(1977)
Solutions of Ill-posed Problems
-
-
Tikhonov, A.N.1
Arsenio, V.Y.2
-
55
-
-
0033556788
-
Mixtures of probabilistic principal component analyzers
-
M. Tipping, C.M. Bishop, Mixtures of probabilistic principal component analyzers, Neural Comput. 11 (2) (1999) 443-482.
-
(1999)
Neural Comput.
, vol.11
, Issue.2
, pp. 443-482
-
-
Tipping, M.1
Bishop, C.M.2
-
56
-
-
0032029288
-
Deterministic annealing EM algorithm
-
N. Ueda, R. Nakano, Deterministic annealing EM algorithm, Neural Networks 11 (1998) 271-282.
-
(1998)
Neural Networks
, vol.11
, pp. 271-282
-
-
Ueda, N.1
Nakano, R.2
-
57
-
-
0034264299
-
SMEM algorithm for mixture models
-
N. Ueda, R. Nakano, Z. Ghahramani, G.E. Hinton, SMEM algorithm for mixture models, Neural Comput. 12 (9) (2000) 2109-2128.
-
(2000)
Neural Comput.
, vol.12
, Issue.9
, pp. 2109-2128
-
-
Ueda, N.1
Nakano, R.2
Ghahramani, Z.3
Hinton, G.E.4
-
58
-
-
19044361940
-
Singular-spectrum analysis: A toolkit for short, noisy chaotic signals
-
R. Valutard, P. You, M. Ghil, Singular-spectrum analysis: a toolkit for short, noisy chaotic signals, Physica D 58 (1992) 95-126.
-
(1992)
Physica D
, vol.58
, pp. 95-126
-
-
Valutard, R.1
You, P.2
Ghil, M.3
-
59
-
-
0003410303
-
-
Addison-Wesley, Reading, MA
-
A.S. Weigend, N.A. Gershenfeld, Time Series Prediction: Forecasting the Future and Understanding the Past, Addison-Wesley, Reading, MA, 1994.
-
(1994)
Time Series Prediction: Forecasting the Future and Understanding the Past
-
-
Weigend, A.S.1
Gershenfeld, N.A.2
-
60
-
-
0000243355
-
Learning in artificial neural networks: A statistical perspective
-
H. White, Learning in artificial neural networks: a statistical perspective, Neural Comput. 1 (4) (1989) 425-464.
-
(1989)
Neural Comput.
, vol.1
, Issue.4
, pp. 425-464
-
-
White, H.1
|