메뉴 건너뛰기




Volumn 55, Issue 3-4, 2003, Pages 521-549

Refining accuracy of environmental data prediction by MoG neural networks

Author keywords

Environmental data prediction; Mixture of Gaussian neural networks; Phase space prediction; Twofold prediction

Indexed keywords

APPROXIMATION THEORY; CHAOS THEORY; COST EFFECTIVENESS; DATA REDUCTION; ENVIRONMENTAL ENGINEERING; FORECASTING; PROBLEM SOLVING;

EID: 0344394525     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0925-2312(03)00392-8     Document Type: Article
Times cited : (27)

References (60)
  • 3
    • 0001576305 scopus 로고
    • Local false neighbours and dynamical dimensions from observed chaotic data
    • H.D.I. Abarbanel, M.B. Kennel, Local false neighbours and dynamical dimensions from observed chaotic data, Phys. Rev. E 47 (1993) 3057-3068.
    • (1993) Phys. Rev. E , vol.47 , pp. 3057-3068
    • Abarbanel, H.D.I.1    Kennel, M.B.2
  • 4
    • 0031139271 scopus 로고    scopus 로고
    • How to extract Lyapunov exponents from short and noisy time series
    • M. Banbrook, G. Ushaw, S. McLaughlin, How to extract Lyapunov exponents from short and noisy time series, IEEE Trans. Signal Process. 45 (5) (1997) 1378-1382.
    • (1997) IEEE Trans. Signal Process. , vol.45 , Issue.5 , pp. 1378-1382
    • Banbrook, M.1    Ushaw, G.2    McLaughlin, S.3
  • 5
    • 85030952031 scopus 로고
    • Mixture density networks, Technical Report NCRG/94/004, Neural Computing Research Group, Aston University, Birmingham, UK
    • C.M. Bishop, Mixture density networks, Technical Report NCRG/94/004, Neural Computing Research Group, Aston University, Birmingham, UK, 1994.
    • (1994)
    • Bishop, C.M.1
  • 9
    • 35949009462 scopus 로고
    • Computing the Lyapunov spectrum of a dynamical system from an observed time series
    • R. Brown, P. Bryant, H.D.I. Abarbanel, Computing the Lyapunov spectrum of a dynamical system from an observed time series, Phys. Rev. A 43 (6) (1991) 2787-2806.
    • (1991) Phys. Rev. A , vol.43 , Issue.6 , pp. 2787-2806
    • Brown, R.1    Bryant, P.2    Abarbanel, H.D.I.3
  • 10
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time series
    • M. Casdagli, Nonlinear prediction of chaotic time series, Physica D 35 (1989) 335-356.
    • (1989) Physica D , vol.35 , pp. 335-356
    • Casdagli, M.1
  • 11
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • S. Chiu, Fuzzy model identification based on cluster estimation, J. Intell. Fuzzy Syst. 2 (3) (1994) 267-278.
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , Issue.3 , pp. 267-278
    • Chiu, S.1
  • 12
    • 0030196823 scopus 로고    scopus 로고
    • Comparison of adaptive methods for function estimation from samples
    • V. Cherkassky, D. Gehring, Comparison of adaptive methods for function estimation from samples, IEEE Trans. Neural Networks 7 (4) (1996) 969-984.
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.4 , pp. 969-984
    • Cherkassky, V.1    Gehring, D.2
  • 13
    • 0026097068 scopus 로고
    • Constrained topological mapping for nonparametric regression analysis
    • V. Cherkassky, H. Lari-Najafi, Constrained topological mapping for nonparametric regression analysis, Neural Networks 4 (1991) 27-40.
    • (1991) Neural Networks , vol.4 , pp. 27-40
    • Cherkassky, V.1    Lari-Najafi, H.2
  • 14
    • 0035696162 scopus 로고    scopus 로고
    • Robust TSK fuzzy modeling for function approximation with outliers
    • C.-C. Chuang, S.-F. Su, S.-S. Chen, Robust TSK fuzzy modeling for function approximation with outliers, IEEE Trans. Fuzzy Syst. 9 (6) (2001) 810-821.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.6 , pp. 810-821
    • Chuang, C.-C.1    Su, S.-F.2    Chen, S.-S.3
  • 15
    • 0344974458 scopus 로고    scopus 로고
    • Computational intelligence in hydroinformatics: A review
    • M. Marinaro, R. Tagliaferri (Eds.), Proceedings of WIRN'99, Springer, Berlin
    • Gb. Cicioni, F. Masulli, Computational intelligence in hydroinformatics: a review, in: M. Marinaro, R. Tagliaferri (Eds.), Proceedings of WIRN'99, Springer, Berlin, 2000.
    • (2000)
    • Cicioni, Gb.1    Masulli, F.2
  • 18
    • 84915212583 scopus 로고
    • Estimation by the nearest neighbor rule
    • T.M. Cover, Estimation by the nearest neighbor rule, IEEE Trans. Inf. Theory 14 (1968) 50-55.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , pp. 50-55
    • Cover, T.M.1
  • 19
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • G. Cybenko, Approximation by superposition of a sigmoidal function, Math. Control Signals Syst. 2 (1989) 303-314.
    • (1989) Math. Control Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 21
    • 34249982739 scopus 로고
    • Predicting chaotic time series
    • J.D. Farmer, J.J. Sidorowich, Predicting chaotic time series, Phys. Rev. Lett. 59 (8) (1987) 845-848.
    • (1987) Phys. Rev. Lett. , vol.59 , Issue.8 , pp. 845-848
    • Farmer, J.D.1    Sidorowich, J.J.2
  • 22
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • A.M. Fraser, H.L. Swinney, Independent coordinates for strange attractors from mutual information, Phys. Rev. A 33 (2) (1986) 1134-1140.
    • (1986) Phys. Rev. A , vol.33 , Issue.2 , pp. 1134-1140
    • Fraser, A.M.1    Swinney, H.L.2
  • 23
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • J.H. Friedman, Multivariate adaptive regression splines, Ann. Stat. 19 (1991) 1-141.
    • (1991) Ann. Stat. , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 24
    • 0002109783 scopus 로고
    • An overview of predictive learning and function approximation
    • V. Cherkassky, J.H. Friedman, H. Wechsler (Eds.), From Statistics to Neural Networks: Theory and Pattern Recognition Applications, NATO ASI Series F, Springer, Berlin
    • J.H. Friedman, An overview of predictive learning and function approximation, in: V. Cherkassky, J.H. Friedman, H. Wechsler (Eds.), From Statistics to Neural Networks: Theory and Pattern Recognition Applications, NATO ASI Series F, Vol. 136, Springer, Berlin, 1994.
    • (1994) , vol.136
    • Friedman, J.H.1
  • 26
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • K. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks 2 (1989) 183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 27
    • 0005892848 scopus 로고
    • Solving inverse problems using an EM approach to density estimation
    • M.C. Mozer, P. Smolensky, D.S. Touretzky, J.L. Elman, A.S. Weigend (Eds.), Proceedings of the 1993 Connectionist Models Summer School, Erlbaum Associates, Hillsdale, NJ
    • Z. Ghahramani, Solving inverse problems using an EM approach to density estimation, in: M.C. Mozer, P. Smolensky, D.S. Touretzky, J.L. Elman, A.S. Weigend (Eds.), Proceedings of the 1993 Connectionist Models Summer School, Erlbaum Associates, Hillsdale, NJ, 1994, pp. 316-323.
    • (1994) , pp. 316-323
    • Ghahramani, Z.1
  • 29
    • 0029191714 scopus 로고
    • Detection of signals in chaos
    • S. Haykin, X.B. Li, Detection of signals in chaos, Proc. IEEE 83 (1) (1995) 94-122.
    • (1995) Proc. IEEE , vol.83 , Issue.1 , pp. 94-122
    • Haykin, S.1    Li, X.B.2
  • 31
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989) 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 34
    • 35949006791 scopus 로고
    • Determining minimum embedding dimension using a geometrical construction
    • M.B. Kennel, R. Brown, H.D.I. Abarbanel, Determining minimum embedding dimension using a geometrical construction, Phys. Rev. A 45 (1992) 3403-3411.
    • (1992) Phys. Rev. A , vol.45 , pp. 3403-3411
    • Kennel, M.B.1    Brown, R.2    Abarbanel, H.D.I.3
  • 36
    • 85030940825 scopus 로고    scopus 로고
    • Visual Recurrence Analysis (VRA), Software Version 4.2, November 15, Available from
    • E. Kononov, Visual Recurrence Analysis (VRA), Software Version 4.2, November 15, 1999, Available from: http://pw1.netcom.com/~eugenek.
    • (1999)
    • Kononov, E.1
  • 37
    • 0028532753 scopus 로고
    • Fuzzy systems as universal approximators
    • B. Kosko, Fuzzy systems as universal approximators, IEEE Trans. Comput. 43 (1994) 1329-1333.
    • (1994) IEEE Trans. Comput. , vol.43 , pp. 1329-1333
    • Kosko, B.1
  • 38
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • M.C. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science 197 (1977) 287-289.
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 39
    • 0003290175 scopus 로고
    • On the dimension of the compact invariant sets of certain non-linear maps
    • D.A. Rang, L.-S. Young (Eds.), Lecture Notes in Mathematics, Springer, Berlin, Warwick
    • R. Mañé, On the dimension of the compact invariant sets of certain non-linear maps, in: D.A. Rang, L.-S. Young (Eds.), Dynamical Systems and Turbulence, Lecture Notes in Mathematics, Vol. 898, Springer, Berlin, Warwick, 1981, pp. 230-242.
    • (1981) Dynamical Systems and Turbulence , vol.898 , pp. 230-242
    • Mañé, R.1
  • 40
    • 14644386778 scopus 로고    scopus 로고
    • Time series forecasting and neural networks
    • Proceedings of IJCNN'99, Washington, DC, USA, July 10-16
    • F. Masulli, L. Studer, Time series forecasting and neural networks, in: Proceedings of IJCNN'99, Washington, DC, USA, July 10-16, 1999.
    • (1999)
    • Masulli, F.1    Studer, L.2
  • 42
    • 85030953334 scopus 로고    scopus 로고
    • Optimisation of Bayesian classifiers by using a splitting hierarchical EM algorithm
    • Proceedings of NC'2000, Berlin, Germany, May 23-26
    • M. Panella, F.M. Frattale Mascioli, A. Rizzi, G. Martinelli, Optimisation of Bayesian classifiers by using a splitting hierarchical EM algorithm, Proceedings of NC'2000, Berlin, Germany, May 23-26, 2000.
    • (2000)
    • Panella, M.1    Frattale Mascioli, F.M.2    Rizzi, A.3    Martinelli, G.4
  • 43
    • 0034868603 scopus 로고    scopus 로고
    • A Constructive EM Approach to Density Estimation for Learning
    • Proceedings of IJCNN 2001, Washington, DC, USA, July 14-19
    • M. Panella, A. Rizzi, F.M. Frattale Mascioli, G. Martinelli, A Constructive EM Approach to Density Estimation for Learning, in: Proceedings of IJCNN 2001, Washington, DC, USA, Vol. 4, July 14-19, 2001, pp. 2608-2613.
    • (2001) , vol.4 , pp. 2608-2613
    • Panella, M.1    Rizzi, A.2    Frattale Mascioli, F.M.3    Martinelli, G.4
  • 44
    • 85030947495 scopus 로고    scopus 로고
    • Improved time series forecasting by a twofold neural predictor
    • Proceedings of EANN 2001, Cagliari, Italy, July 16-18
    • M. Panella, A. Rizzi, F.M. Frattale Mascioli, G. Martinelli, Improved time series forecasting by a twofold neural predictor, in: Proceedings of EANN 2001, Cagliari, Italy, July 16-18, 2001, pp. 196-203.
    • (2001) , pp. 196-203
    • Panella, M.1    Rizzi, A.2    Frattale Mascioli, F.M.3    Martinelli, G.4
  • 45
    • 0036079166 scopus 로고    scopus 로고
    • Constructive MoG neural networks for pollution data forecasting
    • Proceedings of IJCNN 2002, Honolulu, Hawaii, USA, May 12-17
    • M. Panella, A. Rizzi, F.M. Frattale Mascioli, G. Martinelli, Constructive MoG neural networks for pollution data forecasting, in: Proceedings of IJCNN 2002, Honolulu, Hawaii, USA, May 12-17, 2002, pp. 417-422.
    • (2002) , pp. 417-422
    • Panella, M.1    Rizzi, A.2    Frattale Mascioli, F.M.3    Martinelli, G.4
  • 47
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio, F. Girosi, Networks for approximation and learning, Proc. IEEE 78 (9) (1990) 1481-1497.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 48
    • 0032203424 scopus 로고    scopus 로고
    • Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control
    • J.C. Principe, L. Wang, M.A. Motter, Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control, Proc. IEEE 86 (11) (1998) 2240-2258.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2240-2258
    • Principe, J.C.1    Wang, L.2    Motter, M.A.3
  • 49
    • 0033075499 scopus 로고    scopus 로고
    • A deterministic annealing approach for parsimonious design of piecewise regression models
    • A.V. Rao, D.J. Miller, K. Rose, A. Gersho, A deterministic annealing approach for parsimonious design of piecewise regression models, IEEE Trans. Pattern Anal. Mach. Intell. 2 (2) (1999) 159-173.
    • (1999) IEEE Trans. Pattern Anal. Mach. Intell. , vol.2 , Issue.2 , pp. 159-173
    • Rao, A.V.1    Miller, D.J.2    Rose, K.3    Gersho, A.4
  • 50
    • 0028277023 scopus 로고
    • Stock performance modeling using neural networks: A comparative study with regression models
    • A.N. Refenes, A. Zapranis, G. Francis, Stock performance modeling using neural networks: a comparative study with regression models, Neural Networks 7 (1994) 375-388.
    • (1994) Neural Networks , vol.7 , pp. 375-388
    • Refenes, A.N.1    Zapranis, A.2    Francis, G.3
  • 51
    • 0032202775 scopus 로고    scopus 로고
    • Deterministic annealing for clustering, compression, classification, regression, and related optimization problems
    • K. Rose, Deterministic annealing for clustering, compression, classification, regression, and related optimization problems, Proc. IEEE 86 (11) (1998) 2210-2239.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2210-2239
    • Rose, K.1
  • 52
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • D.A. Rang, L.-S. Young (Eds.), Lecture Notes in Mathematics, Springer, Berlin, Warwick
    • F. Takens, Detecting strange attractors in turbulence, in: D.A. Rang, L.-S. Young (Eds.), Dynamical Systems and Turbulence, Lecture Notes in Mathematics, Vol. 898, Springer, Berlin, Warwick, 1981, pp. 366-381.
    • (1981) Dynamical Systems and Turbulence , vol.898 , pp. 366-381
    • Takens, F.1
  • 55
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • M. Tipping, C.M. Bishop, Mixtures of probabilistic principal component analyzers, Neural Comput. 11 (2) (1999) 443-482.
    • (1999) Neural Comput. , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.1    Bishop, C.M.2
  • 56
    • 0032029288 scopus 로고    scopus 로고
    • Deterministic annealing EM algorithm
    • N. Ueda, R. Nakano, Deterministic annealing EM algorithm, Neural Networks 11 (1998) 271-282.
    • (1998) Neural Networks , vol.11 , pp. 271-282
    • Ueda, N.1    Nakano, R.2
  • 58
    • 19044361940 scopus 로고
    • Singular-spectrum analysis: A toolkit for short, noisy chaotic signals
    • R. Valutard, P. You, M. Ghil, Singular-spectrum analysis: a toolkit for short, noisy chaotic signals, Physica D 58 (1992) 95-126.
    • (1992) Physica D , vol.58 , pp. 95-126
    • Valutard, R.1    You, P.2    Ghil, M.3
  • 60
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • H. White, Learning in artificial neural networks: a statistical perspective, Neural Comput. 1 (4) (1989) 425-464.
    • (1989) Neural Comput. , vol.1 , Issue.4 , pp. 425-464
    • White, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.