메뉴 건너뛰기




Volumn 38, Issue 11-13, 2003, Pages 1157-1167

Rumours, Epidemics, and Processes of Mass Action: Synthesis and Analysis

Author keywords

Block matrix methods; Epidemics; Kolmogorov equations; Rumours; Transient processes

Indexed keywords


EID: 0344303631     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0895-7177(03)90116-6     Document Type: Conference Paper
Times cited : (19)

References (22)
  • 1
    • 51649205391 scopus 로고
    • Spread of information through a population with socio-structural bias: I. Assumption of transitivity
    • A. Rapoport, Spread of information through a population with socio-structural bias: I. Assumption of transitivity, Bull. Math. Biophys. 15, 523-533, (1953).
    • (1953) Bull. Math. Biophys. , vol.15 , pp. 523-533
    • Rapoport, A.1
  • 2
    • 51649210292 scopus 로고
    • Spread of information through a population with socio-structural bias: I. Various models with partial transitivity
    • A. Rapoport, Spread of information through a population with socio-structural bias: I. Various models with partial transitivity, Bull. Math. Biophys. 15, 535-546, (1953).
    • (1953) Bull. Math. Biophys. , vol.15 , pp. 535-546
    • Rapoport, A.1
  • 3
    • 51249193698 scopus 로고
    • On the spread of information with time and distance
    • H.D. Landahl, On the spread of information with time and distance, Bull. Math. Biophys. 15, 367-381, (1953).
    • (1953) Bull. Math. Biophys. , vol.15 , pp. 367-381
    • Landahl, H.D.1
  • 4
    • 51249195105 scopus 로고
    • Contribution to the mathematical theory of contagion and spread of information: I. Spread through a thoroughly mixed population
    • H.G. Landau and A. Rapoport, Contribution to the mathematical theory of contagion and spread of information: I. Spread through a thoroughly mixed population, Bull. Math. Biophys. 15, 173-183, (1953).
    • (1953) Bull. Math. Biophys. , vol.15 , pp. 173-183
    • Landau, H.G.1    Rapoport, A.2
  • 8
    • 0000857859 scopus 로고
    • The proportion of the population never hearing a rumour
    • A. Sudbury, The proportion of the population never hearing a rumour, J. Appl. Prob. 22, 443-446, (1985).
    • (1985) J. Appl. Prob. , vol.22 , pp. 443-446
    • Sudbury, A.1
  • 9
    • 38249035872 scopus 로고
    • On the size of a rumour
    • R. Watson, On the size of a rumour, Stoch. Proc. and Applic. 27, 141-149, (1988).
    • (1988) Stoch. Proc. and Applic. , vol.27 , pp. 141-149
    • Watson, R.1
  • 10
    • 21344487947 scopus 로고
    • Distribution of the final extent of a rumour process
    • C. Lefèvre and P. Picard, Distribution of the final extent of a rumour process, J. Appl. Prob. 31, 244-249, (1994).
    • (1994) J. Appl. Prob. , vol.31 , pp. 244-249
    • Lefèvre, C.1    Picard, P.2
  • 11
    • 0034701844 scopus 로고    scopus 로고
    • The exact solution of the general stochastic rumour
    • C.E.M. Pearce, The exact solution of the general stochastic rumour, Mathl. Comput. Modelling 31 (10-12), 289-298, (2000).
    • (2000) Mathl. Comput. Modelling , vol.31 , Issue.10-12 , pp. 289-298
    • Pearce, C.E.M.1
  • 12
    • 0013839597 scopus 로고
    • A solution of the general stochastic epidemic
    • V. Siskind, A solution of the general stochastic epidemic, Biometrika 52, 613-616, (1965).
    • (1965) Biometrika , vol.52 , pp. 613-616
    • Siskind, V.1
  • 13
    • 0013826540 scopus 로고
    • On a partial differential equation of epidemic theory. I
    • J. Gani, On a partial differential equation of epidemic theory. I, Biometrika 52, 617-622, (1965).
    • (1965) Biometrika , vol.52 , pp. 617-622
    • Gani, J.1
  • 14
    • 0000104924 scopus 로고
    • On the general stochastic epidemic
    • Edited by L.M. Le Cam and J. Neyman, Univ. of Calif. Press, Berkeley, CA
    • th Berkeley Symp. on Math. Stat. and Prob., Volume 4, (Edited by L.M. Le Cam and J. Neyman), pp. 271-279, Univ. of Calif. Press, Berkeley, CA, (1967).
    • (1967) th Berkeley Symp. on Math. Stat. and Prob. , vol.4 , pp. 271-279
    • Gani, J.1
  • 15
    • 0010280004 scopus 로고    scopus 로고
    • An algorithmic study of S-I-R stochastic epidemic models
    • Edited by C.C. Heyde, Yu.V. Prohorov, R. Pyke and S.T. Rachev, Springer-Verlag, Heidelberg
    • M.F. Neuts and J.-M. Li, An algorithmic study of S-I-R stochastic epidemic models, In Athens Conference on Applied Probability and Time Series, Volume 1, (Edited by C.C. Heyde, Yu.V. Prohorov, R. Pyke and S.T. Rachev), pp. 295-306, Springer-Verlag, Heidelberg, (1996).
    • (1996) Athens Conference on Applied Probability and Time Series , vol.1 , pp. 295-306
    • Neuts, M.F.1    Li, J.-M.2
  • 16
    • 0345442377 scopus 로고
    • The supersession of one rumour by another
    • G.K. Osei and J.W. Thompson, The supersession of one rumour by another, J. Appl. Prob. 14, 127-134, (1977).
    • (1977) J. Appl. Prob. , vol.14 , pp. 127-134
    • Osei, G.K.1    Thompson, J.W.2
  • 17
    • 0002883372 scopus 로고
    • Stochastic evolution of competing social groups
    • Karmeshu and R.K. Pathria, Stochastic evolution of competing social groups, J. Math. Sociology 7, 47-58, (1980).
    • (1980) J. Math. Sociology , vol.7 , pp. 47-58
    • Karmeshu1    Pathria, R.K.2
  • 19
  • 20
    • 0344580305 scopus 로고    scopus 로고
    • The determinant of a triangular-block matrix
    • C.E.M. Pearce, The determinant of a triangular-block matrix, SIAM Review 39, 519-520, (1997).
    • (1997) SIAM Review , vol.39 , pp. 519-520
    • Pearce, C.E.M.1
  • 22
    • 51249194623 scopus 로고
    • On the mathematical theory of rumour spread
    • A. Rapoport and L.J. Rebhun, On the mathematical theory of rumour spread, Bull. Math. Biophys. 14, 375-383, (1952).
    • (1952) Bull. Math. Biophys. , vol.14 , pp. 375-383
    • Rapoport, A.1    Rebhun, L.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.