-
1
-
-
0034909808
-
On pseudorandomness and resource-bounded measure
-
V. Arvind and J. Köbler. On Pseudorandomness and Resource-Bounded Measure. Theoretical Computer Science, 255(1-2):205-221, 2001.
-
(2001)
Theoretical Computer Science
, vol.255
, Issue.1-2
, pp. 205-221
-
-
Arvind, V.1
Köbler, J.2
-
2
-
-
0023995534
-
Arthur-Merlin games: A randomized proof system and a hierarchy of complexity classes
-
L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System and a Hierarchy of Complexity Classes. J. Comput. Syst. Sci., 36:254-276, 1988.
-
(1988)
J. Comput. Syst. Sci.
, vol.36
, pp. 254-276
-
-
Babai, L.1
Moran, S.2
-
3
-
-
0035166072
-
How to go beyond the black-box simulation barrier
-
B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd FOCS, pages 106-115, 2001.
-
(2001)
42nd FOCS
, pp. 106-115
-
-
Barak, B.1
-
4
-
-
0035163053
-
Resettably-sound zero-knowledge and its applications
-
B. Barak, O. Goldreich, S. Goldwasser, and Y. Lindell. Resettably-Sound Zero-Knowledge and its Applications. In 42nd FOCS, pages 116-125, 2001.
-
(2001)
42nd FOCS
, pp. 116-125
-
-
Barak, B.1
Goldreich, O.2
Goldwasser, S.3
Lindell, Y.4
-
5
-
-
0036041101
-
Strict polynomial-time in simulation and extraction
-
B. Barak and Y. Lindell. Strict Polynomial-time in Simulation and Extraction. In 34th STOC, pages 484-493, 2002.
-
(2002)
34th STOC
, pp. 484-493
-
-
Barak, B.1
Lindell, Y.2
-
7
-
-
0003384765
-
How to prove a theorem so no one else can claim it
-
M. Blum. How to Prove a Theorem So No One Else Can Claim It. In Proc. ICM, pages 1444-1451, 1987.
-
(1987)
Proc. ICM
, pp. 1444-1451
-
-
Blum, M.1
-
8
-
-
0000867507
-
Minimum disclosure proofs of knowledge
-
G. Brassard, D. Chaum, and C. Crépeau. Minimum Disclosure Proofs of Knowledge. JCSS, 37(2):156-189, 1988.
-
(1988)
JCSS
, vol.37
, Issue.2
, pp. 156-189
-
-
Brassard, G.1
Chaum, D.2
Crépeau, C.3
-
9
-
-
85032878466
-
Everything in NP can be argued in perfect zero-knowledge in a bounded number of rounds
-
G. Brassard, C. Crépeau, and M. Yung. Everything in NP Can Be Argued in Perfect Zero-Knowledge in a Bounded Number of Rounds. In EUROCRYPT'89, pp. 192-195, 1989.
-
(1989)
EUROCRYPT'89
, pp. 192-195
-
-
Brassard, G.1
Crépeau, C.2
Yung, M.3
-
10
-
-
0035163054
-
Universally composable security: A new paradigm for cryptographic protocols
-
R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In 42nd FOCS, pages 136-145, 2001.
-
(2001)
42nd FOCS
, pp. 136-145
-
-
Canetti, R.1
-
11
-
-
0033723965
-
Resettable zero-knowledge
-
R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge. 32nd STOC, pp. 235-244, 2000.
-
(2000)
32nd STOC
, pp. 235-244
-
-
Canetti, R.1
Goldreich, O.2
Goldwasser, S.3
Micali, S.4
-
12
-
-
0034830279
-
Black-box concurrent zero-knowledge requires Ω̃(log n) rounds
-
R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-Box Concurrent Zero-Knowledge Requires Ω̃(log n) Rounds. In 33rd STOC, pages 570-579, 2001.
-
(2001)
33rd STOC
, pp. 570-579
-
-
Canetti, R.1
Kilian, J.2
Petrank, E.3
Rosen, A.4
-
13
-
-
35248854495
-
On the limitations of universally composable two-party computation without set-up assumptions
-
R. Canetti, E. Kushilevitz, and Y. Lindell. On the Limitations of Universally Composable Two-Party Computation without Set-up Assumptions In EUROCRYPT'03, pages 68-86, 2003.
-
(2003)
EUROCRYPT'03
, pp. 68-86
-
-
Canetti, R.1
Kushilevitz, E.2
Lindell, Y.3
-
14
-
-
0034496968
-
Zaps and their applications
-
C. Dwork and M. Naor. Zaps and Their Applications. In 41st FOCS, pages 283-293, 2000.
-
(2000)
41st FOCS
, pp. 283-293
-
-
Dwork, C.1
Naor, M.2
-
15
-
-
0033332890
-
Magic functions
-
C. Dwork, M. Naor, O. Reingold, and L. Stockmeyer. Magic Functions. In 40th FOCS, pages 523-534, 1999.
-
(1999)
40th FOCS
, pp. 523-534
-
-
Dwork, C.1
Naor, M.2
Reingold, O.3
Stockmeyer, L.4
-
16
-
-
0031632567
-
Concurrent zero knowledge
-
C. Dwork, M. Naor, and A. Sahai. Concurrent Zero Knowledge. In 30th STOC, pages 409-418, 1998.
-
(1998)
30th STOC
, pp. 409-418
-
-
Dwork, C.1
Naor, M.2
Sahai, A.3
-
17
-
-
84976826800
-
Zero knowledge proofs of knowledge in two rounds
-
U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in Two Rounds. In CRYPTO'89, pages 526-545, 1989.
-
(1989)
CRYPTO'89
, pp. 526-545
-
-
Feige, U.1
Shamir, A.2
-
18
-
-
84990731886
-
How to prove yourself: Practical solutions to identification and signature problems
-
A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In CRYPTO'86, pages 186-194, 1986.
-
(1986)
CRYPTO'86
, pp. 186-194
-
-
Fiat, A.1
Shamir, A.2
-
20
-
-
0000108216
-
How to construct constant-round zero-knowledge proof systems for NP
-
O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems for NP. Journal of Cryptology, 9(3):167-189, 1996.
-
(1996)
Journal of Cryptology
, vol.9
, Issue.3
, pp. 167-189
-
-
Goldreich, O.1
Kahan, A.2
-
21
-
-
0029767165
-
On the composition of zero-knowledge proof systems
-
O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems. SICOMP, 25(1):169-192, 1996.
-
(1996)
SICOMP
, vol.25
, Issue.1
, pp. 169-192
-
-
Goldreich, O.1
Krawczyk, H.2
-
22
-
-
71149116146
-
Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems
-
O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing But Their Validity or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, 38(3):691-729, 1991.
-
(1991)
Journal of the ACM
, vol.38
, Issue.3
, pp. 691-729
-
-
Goldreich, O.1
Micali, S.2
Wigderson, A.3
-
23
-
-
0028676264
-
Definitions and properties of zero-knowledge proof systems
-
O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof Systems. J. Cryptology, 7(1):1-32, 1994.
-
(1994)
J. Cryptology
, vol.7
, Issue.1
, pp. 1-32
-
-
Goldreich, O.1
Oren, Y.2
-
24
-
-
0024611659
-
The knowledge complexity of interactive proof systems
-
S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof Systems. SIAM Journal on Computing, 18(1):186-208, 1989.
-
(1989)
SIAM Journal on Computing
, vol.18
, Issue.1
, pp. 186-208
-
-
Goldwasser, S.1
Micali, S.2
Rackoff, C.3
-
25
-
-
81755180686
-
On the (In)security of the Fiat-Shamir paradigm
-
These proceedings
-
S. Goldwasser and Y. Tauman. On the (In)security of the Fiat-Shamir Paradigm. These proceedings.
-
-
-
Goldwasser, S.1
Tauman, Y.2
-
26
-
-
0345253860
-
A pseudorandom generator from any one-way function
-
J. Håstad, R. Impagliazzo, L. A. Llevin, and M. Luby. A Pseudorandom Generator From Any One-Way Function. SIAM J. Comput., 28(4):1364-1396, 1999.
-
(1999)
SIAM J. Comput.
, vol.28
, Issue.4
, pp. 1364-1396
-
-
Håstad, J.1
Impagliazzo, R.2
Llevin, L.A.3
Luby, M.4
-
27
-
-
0034830278
-
Concurrent and resettable zero-knowledge in poly-logarithmic rounds
-
J. Kilian and E. Petrank. Concurrent and Resettable Zero-Knowledge in Poly-logarithmic Rounds. In 33rd STOC, pages 560-569, 2001.
-
(2001)
33rd STOC
, pp. 560-569
-
-
Kilian, J.1
Petrank, E.2
-
28
-
-
0032319637
-
Lower bounds for zero knowledge on the internet
-
J. Kilian, E. Petrank, and C. Rackoff. Lower Bounds for Zero Knowledge on the Internet. In 39th FOCS, pages 484-492, 1998.
-
(1998)
39th FOCS
, pp. 484-492
-
-
Kilian, J.1
Petrank, E.2
Rackoff, C.3
-
29
-
-
0036588881
-
Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses
-
A. R. Klivans and D. van Melkebeek. Graph Nonisomorphism has Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses. SICOMP, 31(5):1501-1526, 2002.
-
(2002)
SICOMP
, vol.31
, Issue.5
, pp. 1501-1526
-
-
Klivans, A.R.1
Van Melkebeek, D.2
-
31
-
-
0002597886
-
CS Proofs
-
S. Micali. CS Proofs. In 35th FOCS, pages 436-453, 1994.
-
(1994)
35th FOCS
, pp. 436-453
-
-
Micali, S.1
-
32
-
-
0032620477
-
Derandomizing Arthur-Merlin games using hitting sets
-
P. B. Mltersen and N. V. Vinodchandran. Derandomizing Arthur-Merlin Games Using Hitting Sets. In 40th FOCS, pages 71-80, 1999.
-
(1999)
40th FOCS
, pp. 71-80
-
-
Mltersen, P.B.1
Vinodchandran, N.V.2
-
33
-
-
0030086632
-
Randomness is linear in space
-
N. Nisan and D. Zuckerman. Randomness is Linear in Space. J. Comput. Syst. Sci., 52(1):43-52, 1996.
-
(1996)
J. Comput. Syst. Sci.
, vol.52
, Issue.1
, pp. 43-52
-
-
Nisan, N.1
Zuckerman, D.2
-
34
-
-
0036957024
-
Concurrent zero knowledge with logarithmic round-complexity
-
M. Prabhakaran, A. Rosen, and A. Sahai. Concurrent Zero Knowledge with Logarithmic Round-Complexity. In 33rd FOCS, pages 366-375, 2002.
-
(2002)
33rd FOCS
, pp. 366-375
-
-
Prabhakaran, M.1
Rosen, A.2
Sahai, A.3
-
35
-
-
0006544219
-
Zero-knowledge with public keys
-
PhD thesis, MIT
-
L. Reyzin. Zero-Knowledge with Public Keys. PhD thesis, MIT, 2001.
-
(2001)
-
-
Reyzin, L.1
-
36
-
-
84957621865
-
On the concurrent composition of zero-knowledge proofs
-
P. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In EUROCRYPT'99, pages 415-431, 1999.
-
(1999)
EUROCRYPT'99
, pp. 415-431
-
-
Richardson, P.1
Kilian, J.2
-
37
-
-
84983126760
-
A note on the round-complexity of concurrent zero-knowledge
-
A. Rosen. A Note on the Round-Complexity of Concurrent Zero-Knowledge. In Crypto'00, pages 451-468, 2000.
-
(2000)
Crypto'00
, pp. 451-468
-
-
Rosen, A.1
-
39
-
-
0035175916
-
Simple extractors for all minentropies and a new pseudorandom generator
-
R. Shaltiel and C. Umans, Simple Extractors for all Minentropies and a New Pseudorandom Generator. In 42nd FOCS, pages 648-657, 2001.
-
(2001)
42nd FOCS
, pp. 648-657
-
-
Shaltiel, R.1
Umans, C.2
|