메뉴 건너뛰기




Volumn 42, Issue 6, 2000, Pages 995-1002

Weak solutions for some quasilinear elliptic equations by the sub-supersolution method

Author keywords

[No Author keywords available]

Indexed keywords

BOUNDARY VALUE PROBLEMS; COMPUTATIONAL COMPLEXITY; EIGENVALUES AND EIGENFUNCTIONS; LAPLACE TRANSFORMS; MATHEMATICAL OPERATORS; PROBLEM SOLVING; RELAXATION PROCESSES; THEOREM PROVING;

EID: 0343878194     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0362-546X(99)00151-0     Document Type: Article
Times cited : (2)

References (16)
  • 1
    • 84968498384 scopus 로고
    • On the Dirichlet problem for quasi-linear elliptic differential equations of the second order
    • Akô K. On the Dirichlet problem for quasi-linear elliptic differential equations of the second order. J. Math. Soc. Japan. 13:1961;45-62.
    • (1961) J. Math. Soc. Japan , vol.13 , pp. 45-62
    • Akô, K.1
  • 2
    • 0000621668 scopus 로고
    • Existence and multiplicity theorems for semi-linear elliptic boundary value problems
    • Amann H. Existence and multiplicity theorems for semi-linear elliptic boundary value problems. Math. Z. 150:1976;281-295.
    • (1976) Math. Z. , vol.150 , pp. 281-295
    • Amann, H.1
  • 3
    • 0000934232 scopus 로고
    • On some existence theorems for semilinear equations
    • Amann H., Crandall M. On some existence theorems for semilinear equations. Indiana Univ. Math. J. 27:1978;779-790.
    • (1978) Indiana Univ. Math. J. , vol.27 , pp. 779-790
    • Amann, H.1    Crandall, M.2
  • 4
    • 0002366527 scopus 로고
    • Some remarks on a quasilinear elliptic boundary value problem
    • Các N.P. Some remarks on a quasilinear elliptic boundary value problem. Nonlinear Anal. 8:1984;697-709.
    • (1984) Nonlinear Anal. , vol.8 , pp. 697-709
    • Các, N.P.1
  • 5
    • 84972510506 scopus 로고
    • On the existence of a maximal weak solution for a semilinear elliptic equation
    • Dancer E.N., Sweers G. On the existence of a maximal weak solution for a semilinear elliptic equation. Diff. Int. Equa. 2:1989;533-540.
    • (1989) Diff. Int. Equa. , vol.2 , pp. 533-540
    • Dancer, E.N.1    Sweers, G.2
  • 8
    • 0342709522 scopus 로고
    • On a second-order nonlinear elliptic boundary value problem, Nonlinear Anal
    • in: L. Cesari, R. Kannan, H. Weinberger (Eds.), Academic Press, New York
    • P. Hess, On a second-order nonlinear elliptic boundary value problem, Nonlinear Anal, in: L. Cesari, R. Kannan, H. Weinberger (Eds.), A Collection of Papers in Honor of E. Rothe, Academic Press, New York ( 1978 ), pp. 99-107.
    • (1978) A Collection of Papers in Honor of E. Rothe , pp. 99-107
    • Hess, P.1
  • 9
    • 84980157300 scopus 로고
    • Invariant criteria for existence of solutions to second-order quasilinear elliptic equations
    • Kazdan J., Kramer R. Invariant criteria for existence of solutions to second-order quasilinear elliptic equations. Commun. Pure Appl. Math. 31:1978;619-645.
    • (1978) Commun. Pure Appl. Math. , vol.31 , pp. 619-645
    • Kazdan, J.1    Kramer, R.2
  • 11
    • 84971182202 scopus 로고
    • Upper and lower solutions and semilinear second order elliptic equations with non-linear boundary conditions
    • Mawhin J., Schmitt K. Upper and lower solutions and semilinear second order elliptic equations with non-linear boundary conditions. Proc. Roy. Soc. Edinburgh. 97A:1984;199-207.
    • (1984) Proc. Roy. Soc. Edinburgh , vol.97 , pp. 199-207
    • Mawhin, J.1    Schmitt, K.2
  • 12
    • 0342709521 scopus 로고
    • Parabolic differential inequalities and Chaplighin's method
    • Mlak W. Parabolic differential inequalities and Chaplighin's method. Ann. Polon. Math. 8:1960;139-152.
    • (1960) Ann. Polon. Math. , vol.8 , pp. 139-152
    • Mlak, W.1
  • 13
    • 0042737364 scopus 로고
    • Sur l'équation aux dérivées partielles Δ z=f(x,y,z,p,q)
    • Satô T T. Sur l'équation aux dérivées partielles. Δ z=f(x,y,z,p,q) Composition Math. 12:1954;157-177.
    • (1954) Composition Math. , vol.12 , pp. 157-177
    • Satô, T.T.1
  • 14
    • 0001358269 scopus 로고
    • The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables
    • Serrin J. The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Phil. Trans. Roy. Soc. London. 264:1969;413-496.
    • (1969) Phil. Trans. Roy. Soc. London , vol.264 , pp. 413-496
    • Serrin, J.1
  • 15
    • 0342709517 scopus 로고
    • Some existence theorems for equations of the form -Δ u =f(x,u,Du)
    • Xavier J.B.M. Some existence theorems for equations of the form. -Δ u =f(x,u,Du) Nonlinear Anal. 15:1990;59-67.
    • (1990) Nonlinear Anal. , vol.15 , pp. 59-67
    • Xavier, J.B.M.1
  • 16
    • 0342274332 scopus 로고
    • 2,p(Ω) for the equation -Δ u = f(x,u,Du)
    • 2,p(Ω) for the equation -Δ u = f(x,u,Du) Nonlinear Anal. 24:1995;1413-1416.
    • (1995) Nonlinear Anal. , vol.24 , pp. 1413-1416
    • Yan, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.