-
2
-
-
4444259865
-
Geometrical-differential structures on manifolds
-
L. E. Evtushik, Yu. G. Lumiste, N. M. Ostianu, and A. N. Shirokov, "Geometrical-differential structures on manifolds," Probl. Geom. Itogi Nauki. VINITI Akad. Nauk SSSR, 9, 5-246 (1979).
-
(1979)
Probl. Geom. Itogi Nauki. VINITI Akad. Nauk SSSR
, vol.9
, pp. 5-246
-
-
Evtushik, L.E.1
Lumiste, Yu.G.2
Ostianu, N.M.3
Shirokov, A.N.4
-
3
-
-
0009221741
-
Equivalence of the nonlinear Schrödinger equation and Heisenberg ferromagnetic equations
-
V. E. Zakharov and L. A. Takhtajan, "Equivalence of the nonlinear Schrödinger equation and Heisenberg ferromagnetic equations," Teor. Mat. Fiz., 38, No. 1, 26-35 (1979).
-
(1979)
Teor. Mat. Fiz.
, vol.38
, Issue.1
, pp. 26-35
-
-
Zakharov, V.E.1
Takhtajan, L.A.2
-
4
-
-
0042974819
-
Differential geometry of submerged manifolds
-
G. F. Laptev, "Differential geometry of submerged manifolds," Tr. Mosk. Mat. Obshch., No. 2, 275-382 (1953).
-
(1953)
Tr. Mosk. Mat. Obshch., No.
, vol.2
, pp. 275-382
-
-
Laptev, G.F.1
-
5
-
-
17444428813
-
Theoretic-group method of geometrical-differential investigations
-
Moscow, Akad. Nauk SSSR
-
G. F. Laptev, "Theoretic-group method of geometrical-differential investigations," Proc. 3rd All-Union Math. Congress, 1956, Moscow, Akad. Nauk SSSR, No. 3, 409-418 (1958).
-
(1958)
Proc. 3rd All-Union Math. Congress, 1956
, vol.3
, pp. 409-418
-
-
Laptev, G.F.1
-
6
-
-
17444377764
-
The main higher-order infinitesimal structures on a smooth manifold
-
G. F. Laptev, "The main higher-order infinitesimal structures on a smooth manifold," Tr. Geom. Sem. VINITI, Akad. Nauk SSSR, No. 1, 139-189 (1966).
-
(1966)
Tr. Geom. Sem. VINITI, Akad. Nauk SSSR
, vol.1
, pp. 139-189
-
-
Laptev, G.F.1
-
7
-
-
17444407710
-
Structural equations of the principal bundle of a manifold
-
G. F. Laptev, "Structural equations of the principal bundle of a manifold," Tr. Geom. Sem. VINITI, Akad. Nauk SSSR, No. 2, 161-178 (1969).
-
(1969)
Tr. Geom. Sem. VINITI, Akad. Nauk SSSR
, vol.2
, pp. 161-178
-
-
Laptev, G.F.1
-
8
-
-
17444421384
-
On the invariant analytical theory of differentiable mappings
-
G. F. Laptev, "On the invariant analytical theory of differentiable mappings," Tr. Geom. Sem. VINITI, Akad. Nauk SSSR, No. 6, 37-42 (1974).
-
(1974)
Tr. Geom. Sem. VINITI, Akad. Nauk SSSR
, vol.6
, pp. 37-42
-
-
Laptev, G.F.1
-
9
-
-
53149153384
-
On the geometry of pseudodifferentials of evolutionary equations
-
A. K. Rybnikov, "On the geometry of pseudodifferentials of evolutionary equations," Izv. Vuzov. Mat., No. 5, 55-67 (1995).
-
(1995)
Izv. Vuzov. Mat.
, vol.5
, pp. 55-67
-
-
Rybnikov, A.K.1
-
12
-
-
0003421814
-
-
Academic Press, London
-
R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London (1984).
-
(1984)
Solitons and Nonlinear Wave Equations
-
-
Dodd, R.K.1
Eilbeck, J.C.2
Gibbon, J.D.3
Morris, H.C.4
-
13
-
-
53149125026
-
Prolongation structures, connection theory and Backlund transformation
-
Nonlinear evolution equations solvable by the spectral transform, (F. Calogero, ed.), Pitman, London
-
F. B. Estabrook and H. D. Wahlquist, "Prolongation structures, connection theory and Backlund transformation," in: Nonlinear evolution equations solvable by the spectral transform, (F. Calogero, ed.), Res. Notes Math., 26, Pitman, London (1978).
-
(1978)
Res. Notes Math.
, vol.26
-
-
Estabrook, F.B.1
Wahlquist, H.D.2
-
14
-
-
0009018917
-
Pseudodifferentials of Estabrook and Wahlquist, the geometry of solutions, and the theory of connections
-
R. Hermann, "Pseudodifferentials of Estabrook and Wahlquist, the geometry of solutions, and the theory of connections," Phys. Rev. Lett., 36, No. 15, 835-836 (1976).
-
(1976)
Phys. Rev. Lett.
, vol.36
, Issue.1-5
, pp. 835-836
-
-
Hermann, R.1
-
17
-
-
36749112598
-
Prolongation structures of nonlinear evolution equations
-
H. D. Wahlquist and F. B. Estabrook, "Prolongation structures of nonlinear evolution equations," J. Math. Phys., 16, No. 1, 1-7 (1975).
-
(1975)
J. Math. Phys.
, vol.16
, Issue.1
, pp. 1-7
-
-
Wahlquist, H.D.1
Estabrook, F.B.2
|