-
13
-
-
0000072208
-
-
L. Kocarev, K.S. Halle, K. Eckert, L.O. Chua and U. Parlitz, Int. J. Bifurc. Chaos 2, 709 (1992).
-
(1992)
Int. J. Bifurc. Chaos
, vol.2
, pp. 709
-
-
Kocarev, L.1
Halle, K.S.2
Eckert, K.3
Chua, L.O.4
Parlitz, U.5
-
16
-
-
0000317772
-
-
Chaos, Solitons, Fractals 4, 201 (1994)
-
N.F. Rulkov, A.R. Volkovskii, A. Rodríguez-Lozano, E. del Río and M.G. Velarde, Int. J. Bifurc. Chaos 2, 669 (1992); Chaos, Solitons, Fractals 4, 201 (1994)
-
(1992)
Int. J. Bifurc. Chaos
, vol.2
, pp. 669
-
-
Rulkov, N.F.1
Volkovskii, A.R.2
Rodríguez-Lozano, A.3
del Río, E.4
Velarde, M.G.5
-
17
-
-
21844517966
-
-
E. del Río, M.G. Velarde, A. Rodríguez-Lozano, N.F. Rulkov and A.R. Volkovskii, Int. J. Bifurc. Chaos 4, 1003 (1994).
-
(1994)
Int. J. Bifurc. Chaos
, vol.4
, pp. 1003
-
-
del Río, E.1
Velarde, M.G.2
Rodríguez-Lozano, A.3
Rulkov, N.F.4
Volkovskii, A.R.5
-
19
-
-
21344489002
-
-
V. Pérez-Villar, A.P. Muñuzuri, V. Pérez-Muñuzuri and L.O. Chua, Int. J. Bifurc. Chaos 3, 1067 (1993).
-
(1993)
Int. J. Bifurc. Chaos
, vol.3
, pp. 1067
-
-
Pérez-Villar, V.1
Muñuzuri, A.P.2
Pérez-Muñuzuri, V.3
Chua, L.O.4
-
26
-
-
12044254273
-
-
T. Sugawara, M. Tachikawa, T. Tsukamoto and T. Shimizu, Phys. Rev. Lett. 72, 3502 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 3502
-
-
Sugawara, T.1
Tachikawa, M.2
Tsukamoto, T.3
Shimizu, T.4
-
28
-
-
0001307926
-
-
V.S. Anishchenko, T.E. Vadisova, D.E. Postnov and M.A. Safonova, Int. J. Bifurc. Chaos 2, 633 (1992).
-
(1992)
Int. J. Bifurc. Chaos
, vol.2
, pp. 633
-
-
Anishchenko, V.S.1
Vadisova, T.E.2
Postnov, D.E.3
Safonova, M.A.4
-
29
-
-
5844272136
-
-
T.C. Newell, P.M. Alsing, A. Gavrielidis and V. Kovanis, Phys. Rev. E 49, 313 (1994).
-
(1994)
Phys. Rev. E
, vol.49
, pp. 313
-
-
Newell, T.C.1
Alsing, P.M.2
Gavrielidis, A.3
Kovanis, V.4
-
39
-
-
0001255954
-
-
M.N. Lorenzo, I.P. Mariño, V. Pérez-Muñuzuri, M.A. Matías and V. Pérez-Villar, Phys. Rev. E 54, R3094 (1996).
-
(1996)
Phys. Rev. E
, vol.54
, pp. R3094
-
-
Lorenzo, M.N.1
Mariño, I.P.2
Pérez-Muñuzuri, V.3
Matías, M.A.4
Pérez-Villar, V.5
-
40
-
-
33744833457
-
-
N.F. Rulkov, M.M. Sushchik, L.S. Tsimring and H.D.I. Abarbanel, Phys. Rev. E 51, 980 (1995).
-
(1995)
Phys. Rev. E
, vol.51
, pp. 980
-
-
Rulkov, N.F.1
Sushchik, M.M.2
Tsimring, L.S.3
Abarbanel, H.D.I.4
-
43
-
-
0003478288
-
-
Springer-Verlag, New York
-
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, New York, 1983).
-
(1983)
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
-
-
Guckenheimer, J.1
Holmes, P.2
-
45
-
-
0008494528
-
-
A. Wolf, J.B. Swift, H.L. Swinney and J.A. Vastano, Physica D 16, 285 (1985).
-
(1985)
Physica D
, vol.16
, pp. 285
-
-
Wolf, A.1
Swift, J.B.2
Swinney, H.L.3
Vastano, J.A.4
-
46
-
-
0000241853
-
-
x-|Ap=σ(y-x), ty-|Ap=Rx-y-xz, tandtz-|Ap=xy-bz, with the parameters σ=10.0, R=28, and b=8/3
-
E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963); x-|Ap=σ(y-x), ty-|Ap=Rx-y-xz, tandtz-|Ap=xy-bz, with the parameters σ=10.0, R=28, and b=8/3.
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130
-
-
Lorenz, E.N.1
-
47
-
-
33751555569
-
-
The evolution equations of the chaotic models introduced by Sprott used in the present work are B: x-|Ap=yz, y-|Ap=x-y, z-|Ap=1-xy
-
J.C. Sprott, Phys. Rev. E 50, R647 (1994). The evolution equations of the chaotic models introduced by Sprott used in the present work are B: x-|Ap=yz, y-|Ap=x-y, z-|Ap=1-xy; C: x-|Ap=yz, y-|Ap=x-y, z-|Ap=1-(Formula presented); D: x-|Ap=-y, y-|Ap=x+z, z-|Ap=xz+(Formula presented); E: x-|Ap=yz, y-|Ap=(Formula presented)-y, z-|Ap=1-4x; F: x-|Ap=y+z, y-|Ap=-x+0.5y, z-|Ap=(Formula presented)-z; G: x-|Ap=0.4x+z, y-|Ap=xz-y, z-|Ap=-x+y; H: x-|Ap=-y+(Formula presented), y-|Ap=x+0.5y, z-|Ap=x-z; I: x-|Ap=-0.2y, y-|Ap=x+z, z-|Ap=x+(Formula presented)-z; J: x-|Ap=2z, y-|Ap=-2ty+z, z-|Ap=-x+y+(Formula presented); K: x-|Ap=xy-z, y-|Ap=x-y, z-|Ap=x+0.3z; L: x-|Ap=y+3.9z, y-|Ap=0.(Formula presented)-y, z-|Ap=1-x; M: x-|Ap=-z, y-|Ap=-(Formula presented)-y, z-|Ap=1.7+1.7x+y; N: x-|Ap=-2y, y-|Ap=x+(Formula presented), z-|Ap=1+y-2z; O: x-|Ap=y, y-|Ap=x-z, z-|Ap=x+xz+2.7y; P: x-|Ap=2.7y+z, y-|Ap=-x+(Formula presented), z-|Ap=x+y; Q: x-|Ap=-z, y-|Ap=x-y, z-|Ap=3.1x+(Formula presented)+0.5z; R: x-|Ap=0.9-y, y-|Ap=0.4+z, z-|Ap=xy-z; S: x-|Ap=-x-4y, y-|Ap=x+(Formula presented), z-|Ap=1+x.
-
(1994)
Phys. Rev. E
, vol.50
, pp. R647
-
-
Sprott, J.C.1
-
50
-
-
49549126801
-
-
x-|Ap=-(y+z), ty-|Ap=x+ay, tandtz-|Ap=b+z(x-c), with the parameters a=0.2, b=0.2, and c=4.6
-
O.E. Rössler, Phys. Lett. 57A, 397 (1976). x-|Ap=-(y+z), ty-|Ap=x+ay, tandtz-|Ap=b+z(x-c), with the parameters a=0.2, b=0.2, and c=4.6.
-
(1976)
Phys. Lett.
, vol.57
, pp. 397
-
-
Rössler, O.E.1
|