-
1
-
-
85036133031
-
-
G. Grinstein and M. A. Muñoz, in Fourth Granada Lectures in Computational Physics, edited by P. Garrido and J. Marro, Lecture Notes in Physics, Vol. 493 (Springer-Verlag, Berlin, 1997), p. 223
-
G. Grinstein and M. A. Muñoz, in Fourth Granada Lectures in Computational Physics, edited by P. Garrido and J. Marro, Lecture Notes in Physics, Vol. 493 (Springer-Verlag, Berlin, 1997), p. 223
-
-
-
-
3
-
-
85036397737
-
-
e-print cond-mat/0001070
-
H. Hinrichsen, e-print cond-mat/0001070.
-
-
-
Hinrichsen, H.1
-
6
-
-
85036414595
-
-
A. -L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, England, 1995)
-
A. -L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, England, 1995).
-
-
-
-
9
-
-
0001377471
-
-
H. Hinrichsen, R. Livi, D. Mukamel, and A. Politi, Phys. Rev. E 61, R1032 (2000)
-
(2000)
Phys. Rev. E
, vol.61
-
-
Hinrichsen, H.1
Livi, R.2
Mukamel, D.3
Politi, A.4
-
11
-
-
0034297805
-
-
A. Vespignani, R. Dickman, M.A. Muñoz, and S. Zapperi, Phys. Rev. E 62, 4564 (2000)
-
(2000)
Phys. Rev. E
, vol.62
, pp. 4564
-
-
Vespignani, A.1
Dickman, R.2
Muñoz, M.A.3
Zapperi, S.4
-
12
-
-
0034349202
-
-
R. Dickman, M.A. Muñoz, A. Vespignani, and S. Zapperi, Braz. J. Phys. 30, 27 (2000).
-
(2000)
Braz. J. Phys.
, vol.30
, pp. 27
-
-
Dickman, R.1
Muñoz, M.A.2
Vespignani, A.3
Zapperi, S.4
-
20
-
-
21144460667
-
-
K. Yaldram, K.M. Khan, N. Ahmed, and M.A. Khan, J. Phys. A 26, L801 (1993)
-
(1993)
J. Phys. A
, vol.26
-
-
Yaldram, K.1
Khan, K.M.2
Ahmed, N.3
Khan, M.A.4
-
23
-
-
3543028891
-
-
M.A. Muñoz, G. Grinstein, R. Dickman, and R. Livi, Phys. Rev. Lett. 76, 451 (1996).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 451
-
-
Muñoz, M.A.1
Grinstein, G.2
Dickman, R.3
Livi, R.4
-
28
-
-
0001366270
-
-
Phys. Rev. EW. Hwang, S. Kwon, H. Park, and H. Park, 57, 6438 (1998).
-
(1998)
Phys. Rev. E
, vol.57
, pp. 6438
-
-
Hwang, W.1
Kwon, S.2
Park, H.3
Park, H.4
-
33
-
-
0000371614
-
-
For example, long-range interactions do also change the universality; H.K. Janssen, K. Oerding, F. van Wijland, and H.J. Hilhorst, Eur. Phys. J. B 7, 137 (1999).
-
(1999)
Eur. Phys. J. B
, vol.7
, pp. 137
-
-
Janssen, H.K.1
Oerding, K.2
van Wijland, F.3
Hilhorst, H.J.4
-
34
-
-
85036288679
-
-
Dimensional reduction is not a new concept in statistical physics. For example, quenched disordered magnetic systems were some time ago claimed to behave in d dimensions as their corresponding pure counterparts in (Formula presented) dimensions 21. However, this result, is at odds with simple domain wall arguments, and has recently proven to fail 22
-
Dimensional reduction is not a new concept in statistical physics. For example, quenched disordered magnetic systems were some time ago claimed to behave in d dimensions as their corresponding pure counterparts in (Formula presented) dimensions 21. However, this result, is at odds with simple domain wall arguments, and has recently proven to fail 22.
-
-
-
-
44
-
-
4243410993
-
-
M.A. Muñoz, R. Dickman, A. Vespignani, and S. Zapperi, Phys. Rev. E 59, 6175 (1999).
-
(1999)
Phys. Rev. E
, vol.59
, pp. 6175
-
-
Muñoz, M.A.1
Dickman, R.2
Vespignani, A.3
Zapperi, S.4
-
48
-
-
21344497779
-
-
J.F.F Mendes, R. Dickman, M. Henkel, and M.C. Marques, J. Phys. A 27, 3019 (1994).
-
(1994)
J. Phys. A
, vol.27
, pp. 3019
-
-
Mendes, J.F.F.1
Dickman, R.2
Henkel, M.3
Marques, M.C.4
-
49
-
-
0009071257
-
-
See C.A. Angell, Science 267, 1924 (1995)
-
(1995)
Science
, vol.267
, pp. 1924
-
-
Angell, C.A.1
-
50
-
-
0003181848
-
-
and references therein
-
M.A. Muñoz, A. Gabrielli, H. Inaoka, and L. Pietronero, Phys. Rev. E 57, 4354 (1998), and references therein.
-
(1998)
Phys. Rev. E
, vol.57
, pp. 4354
-
-
Muñoz, M.A.1
Gabrielli, A.2
Inaoka, H.3
Pietronero, L.4
-
51
-
-
18644374630
-
-
Interesting references about the self-averaging property in critical disordered systems are A. Aharony and A.B. Harris, Phys. Rev. Lett. 77, 2125 (1996)
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 2125
-
-
Aharony, A.1
Harris, A.B.2
-
53
-
-
85036321731
-
-
Observe that for values of the control parameter (Formula presented), well into the absorbing phase, superabsorbing sites show up also in (Formula presented); but they do not affect the critical region
-
Observe that for values of the control parameter (Formula presented), well into the absorbing phase, superabsorbing sites show up also in (Formula presented); but they do not affect the critical region.
-
-
-
|