메뉴 건너뛰기




Volumn 9, Issue 2, 2001, Pages 128-146

Latin squares with one subsquare

Author keywords

Intercalate; Latin squares; Prolongation; Subsquare; Subsquare free

Indexed keywords


EID: 0242720090     PISSN: 10638539     EISSN: None     Source Type: Journal    
DOI: 10.1002/1520-6610(2001)9:2<128::AID-JCD1003>3.0.CO;2-C     Document Type: Article
Times cited : (6)

References (16)
  • 1
    • 6044259709 scopus 로고
    • A direct construction for Latin squares without proper subsquares
    • L. D. Andersen and E. Mendelsohn, A direct construction for Latin squares without proper subsquares, Ann Discrete Math 15 (1982), 27-53.
    • (1982) Ann Discrete Math , vol.15 , pp. 27-53
    • Andersen, L.D.1    Mendelsohn, E.2
  • 3
    • 0347494167 scopus 로고
    • Remarks on Latin squares with no subsquares of order two
    • R. H. F. Denniston, Remarks on Latin squares with no subsquares of order two, Utilitas Math 13 (1978), 299-302.
    • (1978) Utilitas Math , vol.13 , pp. 299-302
    • Denniston, R.H.F.1
  • 4
    • 0006082484 scopus 로고
    • The construction of subsquare free Latin squares by simulated annealing
    • J. R. Elliott and P. B. Gibbons, The construction of subsquare free Latin squares by simulated annealing, Australas J Combin 5 (1992), 209-228.
    • (1992) Australas J Combin , vol.5 , pp. 209-228
    • Elliott, J.R.1    Gibbons, P.B.2
  • 6
    • 6044271177 scopus 로고
    • Latin squares with no proper subsquares
    • K. Heinrich, Latin squares with no proper subsquares, J Comb Th Ser A 29 (1980), 346-353.
    • (1980) J Comb Th Ser A , vol.29 , pp. 346-353
    • Heinrich, K.1
  • 7
    • 73249148124 scopus 로고
    • Latin squares with and without subsquares of prescribed type
    • Latin squares: New developments in the theory and applications
    • K. Heinrich, Latin squares with and without subsquares of prescribed type, in "Latin squares: New developments in the theory and applications," Ann Discrete Math 46 (1991), 101-147.
    • (1991) Ann Discrete Math , vol.46 , pp. 101-147
    • Heinrich, K.1
  • 8
    • 0002214657 scopus 로고
    • On certain constructions for Latin squares with no Latin subsquares of order two
    • A. Kotzig and J. Turgeon, On certain constructions for Latin squares with no Latin subsquares of order two, Discrete Math. 16 (1976), 263-270.
    • (1976) Discrete Math. , vol.16 , pp. 263-270
    • Kotzig, A.1    Turgeon, J.2
  • 9
    • 0344095597 scopus 로고    scopus 로고
    • Most Latin squares have many subsquares
    • B. D. McKay and I. M. Wanless, Most Latin squares have many subsquares, J Comb Th Ser A 86 (1999), 323-347.
    • (1999) J Comb Th Ser A , vol.86 , pp. 323-347
    • McKay, B.D.1    Wanless, I.M.2
  • 10
    • 3543101852 scopus 로고
    • A direct construction of Latin squares with no subsquares of order two
    • M. McLeish, A direct construction of Latin squares with no subsquares of order two, Ars Combin 10 (1980), 179-186.
    • (1980) Ars Combin , vol.10 , pp. 179-186
    • McLeish, M.1
  • 11
    • 0011271917 scopus 로고
    • The 7 × 7 squares
    • H. W. Norton, The 7 × 7 squares, Ann Eugenics 9 (1939), 269-307.
    • (1939) Ann Eugenics , vol.9 , pp. 269-307
    • Norton, H.W.1
  • 12
    • 0011319304 scopus 로고
    • An omission in Norton's list of 7 × 7 squares
    • A. Sade, An omission in Norton's list of 7 × 7 squares, Ann Math Statist 22 (1951), 306-307.
    • (1951) Ann Math Statist , vol.22 , pp. 306-307
    • Sade, A.1
  • 14
    • 23044527457 scopus 로고    scopus 로고
    • On McLeish's construction for Latin squares without intercalates
    • to appear
    • I. M. Wanless, On McLeish's construction for Latin squares without intercalates, Ars Combin 58 (2001), to appear.
    • (2001) Ars Combin , vol.58
    • Wanless, I.M.1
  • 16
    • 4243587671 scopus 로고    scopus 로고
    • Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles
    • I. M. Wanless, Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles, Elect J Combin 6 (1999), R9.
    • (1999) Elect J Combin , vol.6 , pp. R9
    • Wanless, I.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.