-
1
-
-
0001060859
-
Quantum error correction and orthogonal geometry
-
Calderbank, A.R., Rains, E.M., Shor, P.W., and Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, (1997), 405-408
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 405-408
-
-
Calderbank, A.R.1
Rains, E.M.2
Shor, P.W.3
Sloane, N.J.A.4
-
2
-
-
84961321863
-
Quantum error correction via codes over GF(4)
-
quant-ph/9608006
-
Calderbank, A.R., Rains, E.M., Shor, P.W., and Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Transactions on Information Theory, quant-ph/9608006
-
IEEE Transactions on Information Theory
-
-
Calderbank, A.R.1
Rains, E.M.2
Shor, P.W.3
Sloane, N.J.A.4
-
4
-
-
0000132422
-
Class of quantum error-correcting codes saturating the quantum Hamming bound
-
Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862, (1996)
-
(1996)
Phys. Rev. A
, vol.54
, pp. 1862
-
-
Gottesman, D.1
-
10
-
-
0035504720
-
Nonbinary stabilizer codes
-
Ashikhmin, A. and Knill, E.: Nonbinary stabilizer codes, IEEE Trans, on Information Theory, 47(7), 2001.
-
(2001)
IEEE Trans, on Information Theory
, vol.47
, Issue.7
-
-
Ashikhmin, A.1
Knill, E.2
-
11
-
-
0347721144
-
-
note
-
Concerning the additive structure in double-struck F, the corresponding dual group double-struck F∧ is isomorphic to double-struck F itself. We may choose one group isomorphism i : double-struck F → double-struck F∧ which is symmetric i(a)(a′) = i(a′)(a). Making use of the multiplicative unit 1 in double-struck F, we obtain an injective group homomorphism from F into U(1) by ε := i(1) ε double-struck F∧.
-
-
-
-
12
-
-
14844362515
-
Theory of quantum error-correcting codes
-
Knill, E. and Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55, 900, (1997)
-
(1997)
Phys. Rev. A
, vol.55
, pp. 900
-
-
Knill, E.1
Laflamme, R.2
-
13
-
-
0036149982
-
Quantum error-correcting codes associated with graphs
-
quant-ph/0012111
-
Schlingemann, D. and Werner R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A, 65, 012308, (2001) (quant-ph/0012111)
-
(2001)
Phys. Rev. A
, vol.65
, pp. 012308
-
-
Schlingemann, D.1
Werner, R.F.2
-
14
-
-
0036354269
-
Graphs, Quadratic Forms, and Quantum Codes
-
Grassl, M., Klappenecker, A. and Rotteler M.: Graphs, Quadratic Forms, and Quantum Codes. Proc. Intl. Symp. on Information Theory 2002.
-
(2002)
Proc. Intl. Symp. on Information Theory
-
-
Grassl, M.1
Klappenecker, A.2
Rotteler, M.3
-
15
-
-
0347721143
-
-
Let V, W be two linear spaces over a field double-struck F. For an operator F: V → W the dual map F*: W* → V* is determined by 〈F* ŵ, v〉 := (ŵ, Fv) with ŵ ∈ W* and v ∈ V
-
Let V, W be two linear spaces over a field double-struck F. For an operator F: V → W the dual map F*: W* → V* is determined by 〈F* ŵ, v〉 := (ŵ, Fv) with ŵ ∈ W* and v ∈ V.
-
-
-
-
16
-
-
0347721142
-
-
For an abelian C*-algebra A, we denote by A∧ the collection of all irreducible *-representations (characters) of A. This set is a compact Hausdorff space, called the spectrum of A, and A can be identified with the continuous functions on A∧
-
For an abelian C*-algebra A, we denote by A∧ the collection of all irreducible *-representations (characters) of A. This set is a compact Hausdorff space, called the spectrum of A, and A can be identified with the continuous functions on A∧.
-
-
-
-
17
-
-
0345829328
-
-
For a linear spaces K ⊂ G, the orthogonal complement is the subspace K⊥ consisting of those vectors ĝ ∈ G* in the dual space of G for which (ĝ, k) = 0 for each k ∈ K
-
For a linear spaces K ⊂ G, the orthogonal complement is the subspace K⊥ consisting of those vectors ĝ ∈ G* in the dual space of G for which (ĝ, k) = 0 for each k ∈ K.
-
-
-
|