-
1
-
-
22044436683
-
Kruzhkov's estimates for scalar conservation laws revisited
-
F. BOUCHUT AND B. PERTHAME, Kruzhkov's estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc., 350 (1998), pp. 2847-2870.
-
(1998)
Trans. Amer. Math. Soc.
, vol.350
, pp. 2847-2870
-
-
Bouchut, F.1
Perthame, B.2
-
2
-
-
0033407951
-
Entropy solutions for nonlinear degenerate problems
-
J. CARRILLO, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 147 (1999), pp. 269-361.
-
(1999)
Arch. Ration. Mech. Anal.
, vol.147
, pp. 269-361
-
-
Carrillo, J.1
-
3
-
-
0035556061
-
Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations
-
G.-Q. CHEN AND E. DIBENEDETTO, Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations, SIAM J. Math. Anal., 33 (2001), pp. 751-762.
-
(2001)
SIAM J. Math. Anal.
, vol.33
, pp. 751-762
-
-
Chen, G.-Q.1
Dibenedetto, E.2
-
4
-
-
0242503569
-
Kinetic formulation and well-posedness for kinetic solutions to degenerate parabolic-hyperbolic equations
-
to appear
-
G.-Q. CHEN AND B. PERTHAME, Kinetic formulation and well-posedness for kinetic solutions to degenerate parabolic-hyperbolic equations, Ann. Inst. H. Poincaré, to appear.
-
Ann. Inst. H. Poincaré
-
-
Chen, G.-Q.1
Perthame, B.2
-
5
-
-
0000805244
-
Convergence of the finite volume method for multidimensional conservation laws
-
B. COCKBURN, F. COQUEL, AND P.O. LEFLOCH, Convergence of the finite volume method for multidimensional conservation laws, SIAM J. Numer. Anal., 32 (1995), pp. 687-705.
-
(1995)
SIAM J. Numer. Anal.
, vol.32
, pp. 687-705
-
-
Cockburn, B.1
Coquel, F.2
Lefloch, P.O.3
-
6
-
-
0030360067
-
A priori estimates for numerical methods for scalar conservation laws. Part I: The general approach
-
B. COCKBURN AND P.-A. GREMAUD, A priori estimates for numerical methods for scalar conservation laws. Part I: The general approach, Math. Comp., 65 (1996), pp. 533-573.
-
(1996)
Math. Comp.
, vol.65
, pp. 533-573
-
-
Cockburn, B.1
Gremaud, P.-A.2
-
7
-
-
70350322945
-
Finite volume methods
-
P.G. Ciarlet and J.-L. Lions, eds., North-Holland, Amsterdam
-
R. EYMARD, T. GALLOUËT, AND R. HERBIN, Finite volume methods, in Handb. Numer. Anal. 7, P.G. Ciarlet and J.-L. Lions, eds., North-Holland, Amsterdam, 2001, pp. 713-1020.
-
(2001)
Handb. Numer. Anal.
, vol.7
, pp. 713-1020
-
-
Eymard, R.1
Gallouët, T.2
Herbin, R.3
-
8
-
-
0036022623
-
Convergence of a finite volume scheme for nonlinear degenerate parabolic equations
-
R. EYMARD, T. GALLOUËT, R. HERBIN, AND A. MICHEL, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Numer. Math., 92 (2002), pp. 41-82.
-
(2002)
Numer. Math.
, vol.92
, pp. 41-82
-
-
Eymard, R.1
Gallouët, T.2
Herbin, R.3
Michel, A.4
-
9
-
-
85114329546
-
Numerical Approximation of Hyperbolic Systems of Conservation Laws
-
Springer-Verlag, New York
-
E. GODLEWSKI AND P.-A. RAVIART, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Appl. Math. 118, Springer-Verlag, New York, 1996.
-
(1996)
Appl. Math.
, vol.118
-
-
Godlewski, E.1
Raviart, P.-A.2
-
10
-
-
0033435427
-
Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate
-
C. HILLAIRET, Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate, M2AN Math. Model. Numer. Anal., 33 (1999), pp. 129-156.
-
(1999)
M2AN Math. Model. Numer. Anal.
, vol.33
, pp. 129-156
-
-
Hillairet, C.1
-
12
-
-
84956238079
-
First order quasilinear equations with several space variables
-
S. KRUZHKOV, First order quasilinear equations with several space variables, Math. USSR Sb., 10 (1970), pp. 217-273.
-
(1970)
Math. USSR Sb.
, vol.10
, pp. 217-273
-
-
Kruzhkov, S.1
-
13
-
-
0001161125
-
Accuracy of some approximate methods for computing the weak solutions of a first order quasilinear equation
-
N.N. KUZNETSOV, Accuracy of some approximate methods for computing the weak solutions of a first order quasilinear equation, USSR Comp. Math. Math. Phys., 16 (1976), pp. 105-119.
-
(1976)
USSR Comp. Math. Math. Phys.
, vol.16
, pp. 105-119
-
-
Kuznetsov, N.N.1
-
14
-
-
84968518243
-
A kinetic formulation of multidimensional scalar conservation laws and related questions
-
P.L. LIONS, B. PERTHAME, AND E. TADMOR, A kinetic formulation of multidimensional scalar conservation laws and related questions, J. Amer. Math. Soc., 7 (1994), pp. 169-191.
-
(1994)
J. Amer. Math. Soc.
, vol.7
, pp. 169-191
-
-
Lions, P.L.1
Perthame, B.2
Tadmor, E.3
-
15
-
-
0035592173
-
A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations
-
M. OHLBERGER, A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations, M2AN Math. Model. Numer. Anal., 35 (2001), pp. 355-387.
-
(2001)
M2AN Math. Model. Numer. Anal.
, vol.35
, pp. 355-387
-
-
Ohlberger, M.1
-
16
-
-
0032325185
-
Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure
-
B. PERTHAME, Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure, J. Math. Pure Appl., 77 (1998), pp. 1055-1064.
-
(1998)
J. Math. Pure Appl.
, vol.77
, pp. 1055-1064
-
-
Perthame, B.1
-
18
-
-
84966203226
-
On convergence of monotone finite difference schemes with variable spatial differencing
-
R. SANDERS, On convergence of monotone finite difference schemes with variable spatial differencing, Math. Comp., 40 (1983), pp. 499-518.
-
(1983)
Math. Comp.
, vol.40
, pp. 499-518
-
-
Sanders, R.1
-
19
-
-
0001613507
-
Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws
-
J.-P. VILA, Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws, RAIRO Modél. Math. Anal. Numér., 28 (1994), pp. 267-295.
-
(1994)
RAIRO Modél. Math. Anal. Numér.
, vol.28
, pp. 267-295
-
-
Vila, J.-P.1
|