메뉴 건너뛰기




Volumn , Issue , 2002, Pages 173-182

Shrinkage estimator generalizations of proximal support vector machines

Author keywords

Bayesian models; Bias variance tradeoff; Classification; Correlation; Kernel; Regression

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; CORRELATION METHODS; DATA MINING; ESTIMATION; MATHEMATICAL MODELS; RANDOM PROCESSES; REGRESSION ANALYSIS;

EID: 0242540463     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/775047.775073     Document Type: Conference Paper
Times cited : (29)

References (30)
  • 1
    • 4244094239 scopus 로고    scopus 로고
    • Adult dataset
    • US census bureau
    • US census bureau. Adult dataset. Publicly available from: www.sgi.com/Technology/mlc/db.
  • 2
    • 4243273132 scopus 로고    scopus 로고
    • Bayesian spatial regression analysis with large datasets
    • ph.d dissertation, university of connecticut
    • D. Agarwal. Bayesian spatial regression analysis with large datasets, ph.d dissertation, university of connecticut, www.research.att.com/~dagarwal. 2001.
    • (2001)
    • Agarwal, D.1
  • 4
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • H. Arthur and K. Robert. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12:55-67, 1970.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Arthur, H.1    Robert, K.2
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Brieman. Bagging predictors. Machine Learning, 26:123-140, 1996.
    • (1996) Machine Learning , vol.26 , pp. 123-140
    • Brieman, L.1
  • 8
    • 84899013173 scopus 로고    scopus 로고
    • Support vector regression machines
    • In Michael C. Mozer, Michael I. Jordan, and Thoms Petsche editors; The MIT Press, Cambridge, MA
    • H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik. Support vector regression machines. In Michael C. Mozer, Michael I. Jordan, and Thoms Petsche editors, Advances in Neural Information Processing Systems -9-, pages 155-161. The MIT Press, Cambridge, MA, 1997.
    • (1997) Advances in Neural Information Processing Systems , Issue.9 , pp. 155-161
    • Drucker, H.1    Burges, C.J.2    Kaufman, L.3    Smola, A.4    Vapnik, V.5
  • 9
    • 0003830005 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • Technical Report, Department of Mechanical Engineering, National University of Singapore
    • K. Duan, S. Keerthi, and A. Poo. Evaluation of simple performance measures for tuning SVM hyperparameters. Technical Report, Department of Mechanical Engineering, National University of Singapore, 2001.
    • (2001)
    • Duan, K.1    Keerthi, S.2    Poo, A.3
  • 12
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • April
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 38(2):337-374, April 2000.
    • (2000) The Annals of Statistics , vol.38 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 16
    • 0038259114 scopus 로고    scopus 로고
    • Classes of kernels for machine learning: A statistics perspective
    • M. Genton. Classes of kernels for machine learning: A statistics perspective. Journal of Machine Learning Research, 2:299-312, 2000.
    • (2000) Journal of Machine Learning Research , vol.2 , pp. 299-312
    • Genton, M.1
  • 19
    • 0242698122 scopus 로고
    • A bayesian view on ridge regression
    • T. Hsaing. A bayesian view on ridge regression. The Statistician, 24:267-268, 1975.
    • (1975) The Statistician , vol.24 , pp. 267-268
    • Hsaing, T.1
  • 24
    • 0001777975 scopus 로고    scopus 로고
    • Generalized support vector machines
    • In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors; The MIT Press, Cambridge, MA
    • O. Mangasarian. Generalized support vector machines. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 135-146. The MIT Press, Cambridge, MA, 2000.
    • (2000) Advances in Large Margin Classifiers , pp. 135-146
    • Mangasarian, O.1
  • 25
    • 0002311869 scopus 로고
    • Ridge likelihood estimation for generalized linear regression
    • In P. van der Heijden, W. Jensen, B. Francis, and G. Seeber, editors; North Holland Publishing Company (Elseviers), Amsterdam
    • B. Marx, P. Eilers, and E. Smith. Ridge likelihood estimation for generalized linear regression. In P. van der Heijden, W. Jensen, B. Francis, and G. Seeber, editors, Statistical Modeling, pages 227-238. North Holland Publishing Company (Elseviers), Amsterdam, 1992.
    • (1992) Statistical Modeling , pp. 227-238
    • Marx, B.1    Eilers, P.2    Smith, E.3
  • 26
    • 0003408496 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • P. Murphy and D. Aha. UCI repository of machine learning databases. www.ics.uci.edu/~mleran/MLRepository.html.
    • Murphy, P.1    Aha, D.2
  • 29
    • 0343188841 scopus 로고    scopus 로고
    • Meschach: Matrix computations in C
    • D. Stewart and Z. Leyk. Meschach: Matrix computations in C. www.netlib.org/c/meschach.
    • Stewart, D.1    Leyk, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.