-
1
-
-
0029588274
-
-
Optically active (S)-alcohols are of particular interest since commercialised drugs as well as promising new drug candidates are based on their use. For representative examples, see: a) B. A. Anderson, M. M. Hansen, A. R. Harkness, C. L. Henry, J. T. Vicenzi, M. J. Zmijewski, J. Am. Chem. Soc. 1995, 117, 12538-12539; b) R. N. Patel, Adv. Appl. Microbiol. 1997, 43, 91-140; c) A. Kumar, D. H. Ner, S. Y. Dike, Tetrahedron Lett. 1991, 32, 1901-1904; d) R. A. Holdt, S. R. Rigby, (Zeneca Ltd.), US Patent 5,580,764, 1996.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 12538-12539
-
-
Anderson, B.A.1
Hansen, M.M.2
Harkness, A.R.3
Henry, C.L.4
Vicenzi, J.T.5
Zmijewski, M.J.6
-
2
-
-
0030935037
-
-
Optically active (S)-alcohols are of particular interest since commercialised drugs as well as promising new drug candidates are based on their use. For representative examples, see: a) B. A. Anderson, M. M. Hansen, A. R. Harkness, C. L. Henry, J. T. Vicenzi, M. J. Zmijewski, J. Am. Chem. Soc. 1995, 117, 12538-12539; b) R. N. Patel, Adv. Appl. Microbiol. 1997, 43, 91-140; c) A. Kumar, D. H. Ner, S. Y. Dike, Tetrahedron Lett. 1991, 32, 1901-1904; d) R. A. Holdt, S. R. Rigby, (Zeneca Ltd.), US Patent 5,580,764, 1996.
-
(1997)
Adv. Appl. Microbiol.
, vol.43
, pp. 91-140
-
-
Patel, R.N.1
-
3
-
-
0026096554
-
-
Optically active (S)-alcohols are of particular interest since commercialised drugs as well as promising new drug candidates are based on their use. For representative examples, see: a) B. A. Anderson, M. M. Hansen, A. R. Harkness, C. L. Henry, J. T. Vicenzi, M. J. Zmijewski, J. Am. Chem. Soc. 1995, 117, 12538-12539; b) R. N. Patel, Adv. Appl. Microbiol. 1997, 43, 91-140; c) A. Kumar, D. H. Ner, S. Y. Dike, Tetrahedron Lett. 1991, 32, 1901-1904; d) R. A. Holdt, S. R. Rigby, (Zeneca Ltd.), US Patent 5,580,764, 1996.
-
(1991)
Tetrahedron Lett.
, vol.32
, pp. 1901-1904
-
-
Kumar, A.1
Ner, D.H.2
Dike, S.Y.3
-
4
-
-
0242572604
-
-
US Patent 5,580,764, 1996
-
Optically active (S)-alcohols are of particular interest since commercialised drugs as well as promising new drug candidates are based on their use. For representative examples, see: a) B. A. Anderson, M. M. Hansen, A. R. Harkness, C. L. Henry, J. T. Vicenzi, M. J. Zmijewski, J. Am. Chem. Soc. 1995, 117, 12538-12539; b) R. N. Patel, Adv. Appl. Microbiol. 1997, 43, 91-140; c) A. Kumar, D. H. Ner, S. Y. Dike, Tetrahedron Lett. 1991, 32, 1901-1904; d) R. A. Holdt, S. R. Rigby, (Zeneca Ltd.), US Patent 5,580,764, 1996.
-
-
-
Holdt, R.A.1
Rigby, S.R.2
-
5
-
-
0001483542
-
-
For selected recent contributions in the field of asymmetric metal-catalysed hydrogenation of ketones, see: a) M. J. Burk, W. Hems, D. Herzberg, C. Malan, A. Zanotti-Gerosa, Org. Lett. 2000, 2, 4173-4176; b) Review: R. Noyori, T. Okhuma, Angew. Chem. Int. Ed. 2001, 40, 40-73; c) T. Ohkuma, H. Takeno, Y. Honda, R. Noyori, Adv. Synth. Catal. 2001, 343, 369-375; d) T. Ohkuma, M. Koizumi, M. Yoshida, R. Noyori, Org. Lett. 2000, 2, 1749-1751.
-
(2000)
Org. Lett.
, vol.2
, pp. 4173-4176
-
-
Burk, M.J.1
Hems, W.2
Herzberg, D.3
Malan, C.4
Zanotti-Gerosa, A.5
-
6
-
-
37649026044
-
-
For selected recent contributions in the field of asymmetric metal-catalysed hydrogenation of ketones, see: a) M. J. Burk, W. Hems, D. Herzberg, C. Malan, A. Zanotti-Gerosa, Org. Lett. 2000, 2, 4173-4176; b) Review: R. Noyori, T. Okhuma, Angew. Chem. Int. Ed. 2001, 40, 40-73; c) T. Ohkuma, H. Takeno, Y. Honda, R. Noyori, Adv. Synth. Catal. 2001, 343, 369-375; d) T. Ohkuma, M. Koizumi, M. Yoshida, R. Noyori, Org. Lett. 2000, 2, 1749-1751.
-
(2001)
Angew. Chem. Int. Ed.
, vol.40
, pp. 40-73
-
-
Noyori, R.1
Okhuma, T.2
-
7
-
-
0001352945
-
-
For selected recent contributions in the field of asymmetric metal-catalysed hydrogenation of ketones, see: a) M. J. Burk, W. Hems, D. Herzberg, C. Malan, A. Zanotti-Gerosa, Org. Lett. 2000, 2, 4173-4176; b) Review: R. Noyori, T. Okhuma, Angew. Chem. Int. Ed. 2001, 40, 40-73; c) T. Ohkuma, H. Takeno, Y. Honda, R. Noyori, Adv. Synth. Catal. 2001, 343, 369-375; d) T. Ohkuma, M. Koizumi, M. Yoshida, R. Noyori, Org. Lett. 2000, 2, 1749-1751.
-
(2001)
Adv. Synth. Catal.
, vol.343
, pp. 369-375
-
-
Ohkuma, T.1
Takeno, H.2
Honda, Y.3
Noyori, R.4
-
8
-
-
0001322847
-
-
For selected recent contributions in the field of asymmetric metal-catalysed hydrogenation of ketones, see: a) M. J. Burk, W. Hems, D. Herzberg, C. Malan, A. Zanotti-Gerosa, Org. Lett. 2000, 2, 4173-4176; b) Review: R. Noyori, T. Okhuma, Angew. Chem. Int. Ed. 2001, 40, 40-73; c) T. Ohkuma, H. Takeno, Y. Honda, R. Noyori, Adv. Synth. Catal. 2001, 343, 369-375; d) T. Ohkuma, M. Koizumi, M. Yoshida, R. Noyori, Org. Lett. 2000, 2, 1749-1751.
-
(2000)
Org. Lett.
, vol.2
, pp. 1749-1751
-
-
Ohkuma, T.1
Koizumi, M.2
Yoshida, M.3
Noyori, R.4
-
9
-
-
0034617885
-
-
For selected recent contributions in the field of asymmetric whole-cell-biocatalytic reduction of ketones, see: a) T. Matsuda, T. Harada, K. Nakamura, Chem. Commun. 2000, 1367-1368; b) Y. Yasohara, N. Kizaki, J. Hasegawa, M. Wada, M. Kataoka, S. Shimizu, Tetrahedron: Asymmetry 2001, 12, 1713-1718; c) W. Stampfer, B. Kosjek, C. Moitzi, W. Kroutil, K. Faber, Angew. Chem. 2002, 114, 1056-1059.
-
(2000)
Chem. Commun.
, pp. 1367-1368
-
-
Matsuda, T.1
Harada, T.2
Nakamura, K.3
-
10
-
-
0035898137
-
-
For selected recent contributions in the field of asymmetric whole-cell-biocatalytic reduction of ketones, see: a) T. Matsuda, T. Harada, K. Nakamura, Chem. Commun. 2000, 1367-1368; b) Y. Yasohara, N. Kizaki, J. Hasegawa, M. Wada, M. Kataoka, S. Shimizu, Tetrahedron: Asymmetry 2001, 12, 1713-1718; c) W. Stampfer, B. Kosjek, C. Moitzi, W. Kroutil, K. Faber, Angew. Chem. 2002, 114, 1056-1059.
-
(2001)
Tetrahedron: Asymmetry
, vol.12
, pp. 1713-1718
-
-
Yasohara, Y.1
Kizaki, N.2
Hasegawa, J.3
Wada, M.4
Kataoka, M.5
Shimizu, S.6
-
11
-
-
0009979414
-
-
For selected recent contributions in the field of asymmetric whole-cell-biocatalytic reduction of ketones, see: a) T. Matsuda, T. Harada, K. Nakamura, Chem. Commun. 2000, 1367-1368; b) Y. Yasohara, N. Kizaki, J. Hasegawa, M. Wada, M. Kataoka, S. Shimizu, Tetrahedron: Asymmetry 2001, 12, 1713-1718; c) W. Stampfer, B. Kosjek, C. Moitzi, W. Kroutil, K. Faber, Angew. Chem. 2002, 114, 1056-1059.
-
(2002)
Angew. Chem.
, vol.114
, pp. 1056-1059
-
-
Stampfer, W.1
Kosjek, B.2
Moitzi, C.3
Kroutil, W.4
Faber, K.5
-
12
-
-
0141438664
-
-
For recent reviews about the biocatalytic reduction, see: a) W. Hummel, Adv. Biochem. Eng./Biotechnol. 1997, 58, 146-184; b) K. Faber, Biotransformations in Organic Chemistry, 4th edn., Springer-Verlag, Berlin, 2000, chapter 2.2.3, pp. 192-194; c) K. Nakamura, T. Matsuda, in Enzyme Catalysis in Organic Synthesis, (Eds.: K. Drauz, H. Waldmann), Weinheim, 2nd edn., VCH-Wiley, 2002, chapter 15.1.
-
(1997)
Adv. Biochem. Eng./Biotechnol.
, vol.58
, pp. 146-184
-
-
Hummel, W.1
-
13
-
-
0141438666
-
-
Springer-Verlag, Berlin, chapter 2.2.3
-
For recent reviews about the biocatalytic reduction, see: a) W. Hummel, Adv. Biochem. Eng./Biotechnol. 1997, 58, 146-184; b) K. Faber, Biotransformations in Organic Chemistry, 4th edn., Springer-Verlag, Berlin, 2000, chapter 2.2.3, pp. 192-194; c) K. Nakamura, T. Matsuda, in Enzyme Catalysis in Organic Synthesis, (Eds.: K. Drauz, H. Waldmann), Weinheim, 2nd edn., VCH-Wiley, 2002, chapter 15.1.
-
(2000)
Biotransformations in Organic Chemistry, 4th Edn.
, pp. 192-194
-
-
Faber, K.1
-
14
-
-
14944349481
-
-
(Eds.: K. Drauz, H. Waldmann), Weinheim, 2nd edn., VCH-Wiley, chapter 15.1
-
For recent reviews about the biocatalytic reduction, see: a) W. Hummel, Adv. Biochem. Eng./Biotechnol. 1997, 58, 146-184; b) K. Faber, Biotransformations in Organic Chemistry, 4th edn., Springer-Verlag, Berlin, 2000, chapter 2.2.3, pp. 192-194; c) K. Nakamura, T. Matsuda, in Enzyme Catalysis in Organic Synthesis, (Eds.: K. Drauz, H. Waldmann), Weinheim, 2nd edn., VCH-Wiley, 2002, chapter 15.1.
-
(2002)
Enzyme Catalysis in Organic Synthesis
-
-
Nakamura, K.1
Matsuda, T.2
-
15
-
-
0001747792
-
-
For selected recent examples of enzymatic reductions under in situ cofactor regeneration which were carried out successfully on a gram scale, see: a) M. Wolberg, W. Hummel, C. Wandrey, M. Müller, Angew. Chem. 2000, 112, 4476-4478; Angew. Chem. Int. Ed. 2000, 39, 4306-4308; b) M. Wolberg, A. G. Ji, W Hummel, M. Müller, Synthesis 2001, 937-942; c) M. Wolberg, W. Hummel, M. Müller, Chem. Eur. J. 2001, 7, 4652-4571; 5d) T. Schubert, W. Hummel, M. Müller, Angew. Chem. 2002, 114, 656-659; Angew. Chem. Int. Ed. 2002, 41, 634-637.
-
(2000)
Angew. Chem.
, vol.112
, pp. 4476-4478
-
-
Wolberg, M.1
Hummel, W.2
Wandrey, C.3
Müller, M.4
-
16
-
-
0034605876
-
-
For selected recent examples of enzymatic reductions under in situ cofactor regeneration which were carried out successfully on a gram scale, see: a) M. Wolberg, W. Hummel, C. Wandrey, M. Müller, Angew. Chem. 2000, 112, 4476-4478; Angew. Chem. Int. Ed. 2000, 39, 4306-4308; b) M. Wolberg, A. G. Ji, W Hummel, M. Müller, Synthesis 2001, 937-942; c) M. Wolberg, W. Hummel, M. Müller, Chem. Eur. J. 2001, 7, 4652-4571; 5d) T. Schubert, W. Hummel, M. Müller, Angew. Chem. 2002, 114, 656-659; Angew. Chem. Int. Ed. 2002, 41, 634-637.
-
(2000)
Angew. Chem. Int. Ed.
, vol.39
, pp. 4306-4308
-
-
-
17
-
-
0035026590
-
-
For selected recent examples of enzymatic reductions under in situ cofactor regeneration which were carried out successfully on a gram scale, see: a) M. Wolberg, W. Hummel, C. Wandrey, M. Müller, Angew. Chem. 2000, 112, 4476-4478; Angew. Chem. Int. Ed. 2000, 39, 4306-4308; b) M. Wolberg, A. G. Ji, W Hummel, M. Müller, Synthesis 2001, 937-942; c) M. Wolberg, W. Hummel, M. Müller, Chem. Eur. J. 2001, 7, 4652-4571; 5d) T. Schubert, W. Hummel, M. Müller, Angew. Chem. 2002, 114, 656-659; Angew. Chem. Int. Ed. 2002, 41, 634-637.
-
(2001)
Synthesis
, pp. 937-942
-
-
Wolberg, M.1
Ji, A.G.2
Hummel, W.3
Müller, M.4
-
18
-
-
0012289993
-
-
For selected recent examples of enzymatic reductions under in situ cofactor regeneration which were carried out successfully on a gram scale, see: a) M. Wolberg, W. Hummel, C. Wandrey, M. Müller, Angew. Chem. 2000, 112, 4476-4478; Angew. Chem. Int. Ed. 2000, 39, 4306-4308; b) M. Wolberg, A. G. Ji, W Hummel, M. Müller, Synthesis 2001, 937-942; c) M. Wolberg, W. Hummel, M. Müller, Chem. Eur. J. 2001, 7, 4652-4571; 5d) T. Schubert, W. Hummel, M. Müller, Angew. Chem. 2002, 114, 656-659; Angew. Chem. Int. Ed. 2002, 41, 634-637.
-
(2001)
Chem. Eur. J.
, vol.7
, pp. 4652-14571
-
-
Wolberg, M.1
Hummel, W.2
Müller, M.3
-
19
-
-
0012355073
-
-
For selected recent examples of enzymatic reductions under in situ cofactor regeneration which were carried out successfully on a gram scale, see: a) M. Wolberg, W. Hummel, C. Wandrey, M. Müller, Angew. Chem. 2000, 112, 4476-4478; Angew. Chem. Int. Ed. 2000, 39, 4306-4308; b) M. Wolberg, A. G. Ji, W Hummel, M. Müller, Synthesis 2001, 937-942; c) M. Wolberg, W. Hummel, M. Müller, Chem. Eur. J. 2001, 7, 4652-4571; 5d) T. Schubert, W. Hummel, M. Müller, Angew. Chem. 2002, 114, 656-659; Angew. Chem. Int. Ed. 2002, 41, 634-637.
-
(2002)
Angew. Chem.
, vol.114
, pp. 656-659
-
-
Schubert, T.1
Hummel, W.2
Müller, M.3
-
20
-
-
0037084327
-
-
For selected recent examples of enzymatic reductions under in situ cofactor regeneration which were carried out successfully on a gram scale, see: a) M. Wolberg, W. Hummel, C. Wandrey, M. Müller, Angew. Chem. 2000, 112, 4476-4478; Angew. Chem. Int. Ed. 2000, 39, 4306-4308; b) M. Wolberg, A. G. Ji, W Hummel, M. Müller, Synthesis 2001, 937-942; c) M. Wolberg, W. Hummel, M. Müller, Chem. Eur. J. 2001, 7, 4652-4571; 5d) T. Schubert, W. Hummel, M. Müller, Angew. Chem. 2002, 114, 656-659; Angew. Chem. Int. Ed. 2002, 41, 634-637.
-
(2002)
Angew. Chem. Int. Ed.
, vol.41
, pp. 634-637
-
-
-
21
-
-
0034011107
-
-
[4b]
-
[6b] it is mentioned that "many of the difficulties associated with the application of whole cells as catalyst can be avoided using isolated enzymes." As main disadvantages of (natural) whole-cell catalysts the presence of more than one alcohol dehydrogenases (leading to side reactions, and reducing the enantioselectivity), and diffusion limitations are known. Furthermore, the properties of the cofactor-regenerating enzyme FDH have been improved remarkably by protein engineering in the Kula group. Thus, a stable and efficient formate dehydrogenase is available for NAD-regeneration, see: H. Slusarczyk, S. Felber, M.-R. Kula, M. Pohl, Eur. J. Biochem. 2000, 267, 1280-1289.
-
-
-
-
22
-
-
0034011107
-
-
(Ed.: R. N. Patel), Marcel Dekker, New York, chapter 28
-
[6b] it is mentioned that "many of the difficulties associated with the application of whole cells as catalyst can be avoided using isolated enzymes." As main disadvantages of (natural) whole-cell catalysts the presence of more than one alcohol dehydrogenases (leading to side reactions, and reducing the enantioselectivity), and diffusion limitations are known. Furthermore, the properties of the cofactor-regenerating enzyme FDH have been improved remarkably by protein engineering in the Kula group. Thus, a stable and efficient formate dehydrogenase is available for NAD-regeneration, see: H. Slusarczyk, S. Felber, M.-R. Kula, M. Pohl, Eur. J. Biochem. 2000, 267, 1280-1289.
-
(2000)
Stereoselective Biocatalysis
, pp. 839-866
-
-
Kula, M.R.1
Kragl, U.2
-
23
-
-
0034011107
-
-
[6b]
-
[6b] it is mentioned that "many of the difficulties associated with the application of whole cells as catalyst can be avoided using isolated enzymes." As main disadvantages of (natural) whole-cell catalysts the presence of more than one alcohol dehydrogenases (leading to side reactions, and reducing the enantioselectivity), and diffusion limitations are known. Furthermore, the properties of the cofactor-regenerating enzyme FDH have been improved remarkably by protein engineering in the Kula group. Thus, a stable and efficient formate dehydrogenase is available for NAD-regeneration, see: H. Slusarczyk, S. Felber, M.-R. Kula, M. Pohl, Eur. J. Biochem. 2000, 267, 1280-1289.
-
-
-
-
24
-
-
0034011107
-
-
[6b] it is mentioned that "many of the difficulties associated with the application of whole cells as catalyst can be avoided using isolated enzymes." As main disadvantages of (natural) whole-cell catalysts the presence of more than one alcohol dehydrogenases (leading to side reactions, and reducing the enantioselectivity), and diffusion limitations are known. Furthermore, the properties of the cofactor-regenerating enzyme FDH have been improved remarkably by protein engineering in the Kula group. Thus, a stable and efficient formate dehydrogenase is available for NAD-regeneration, see: H. Slusarczyk, S. Felber, M.-R. Kula, M. Pohl, Eur. J. Biochem. 2000, 267, 1280-1289.
-
(2000)
Eur. J. Biochem.
, vol.267
, pp. 1280-1289
-
-
Slusarczyk, H.1
Felber, S.2
Kula, M.-R.3
Pohl, M.4
-
25
-
-
0000798607
-
-
a) W. Hummel, H. Schütte, E. Schmidt, C. Wandrey, M.-R. Kula, Appl. Microbiol. Biotechnol. 1987, 26, 409-416;
-
(1987)
Appl. Microbiol. Biotechnol.
, vol.26
, pp. 409-416
-
-
Hummel, W.1
Schütte, H.2
Schmidt, E.3
Wandrey, C.4
Kula, M.-R.5
-
26
-
-
0343196685
-
-
b) G. Krix, A. S. Bommarius, K. Drauz, M. Kottenhahn, M. Schwarm, M.-R. Kula, J. Biotechnol. 1997, 55, 29-39;
-
(1997)
J. Biotechnol.
, vol.55
, pp. 29-39
-
-
Krix, G.1
Bommarius, A.S.2
Drauz, K.3
Kottenhahn, M.4
Schwarm, M.5
Kula, M.-R.6
-
27
-
-
0003616618
-
-
(Eds.: B. Cornils, W. A. Herrmann), Weinheim, 2nd edn., VCH-Wiley, chapter 3.2.1
-
c) C. Schultz, H. Gröger, C. Dinkel, K. Drauz, H. Waldmann in: Applied Homogeneous Catalysis with Organometallic Compounds, (Eds.: B. Cornils, W. A. Herrmann), Weinheim, 2nd edn., VCH-Wiley, 2002, Vol. 2, chapter 3.2.1.
-
(2002)
Applied Homogeneous Catalysis with Organometallic Compounds
, vol.2
-
-
Schultz, C.1
Gröger, H.2
Dinkel, C.3
Drauz, K.4
Waldmann, H.5
-
28
-
-
0242488461
-
-
note
-
Other prerequisites which have to be fulfilled in order to realise a valuable and large-scale feasible reduction with isolated enzymes are, e. g., high yields, high enantioselectivities, and in particular good space-time yield (so far often enzymatic reductions are typically carried out at low substrate concentrations of ca. 10 mM).
-
-
-
-
29
-
-
0032557624
-
-
a) Y. Korkhin, A. J. Kalb, M. Peretz, O. Bogin, Y. Burstein, F. Frolow, J. Mol. Biol. 1998, 278, 967-981;
-
(1998)
J. Mol. Biol.
, vol.278
, pp. 967-981
-
-
Korkhin, Y.1
Kalb, A.J.2
Peretz, M.3
Bogin, O.4
Burstein, Y.5
Frolow, F.6
-
30
-
-
0031055738
-
-
b) O. Bogin, M. Peretz, Y. Burstein, Protein Sci. 1997, 6, 450-458.
-
(1997)
Protein Sci.
, vol.6
, pp. 450-458
-
-
Bogin, O.1
Peretz, M.2
Burstein, Y.3
-
31
-
-
0034284035
-
-
P. J. Holt, R. E. Williams, K. N. Jordan, C. R. Lowe, N. C. Bruce, FEMS Microbiol. Lett. 2000, 190, 57-62.
-
(2000)
FEMS Microbiol. Lett.
, vol.190
, pp. 57-62
-
-
Holt, P.J.1
Williams, R.E.2
Jordan, K.N.3
Lowe, C.R.4
Bruce, N.C.5
-
32
-
-
85087535554
-
-
note
-
[6b] NAD is about seven times cheaper compared with NADP.
-
-
-
-
33
-
-
0242405068
-
-
DOS 4,209,022, 1993
-
a) W. Hummel, C. Gottwald, DOS 4,209,022, 1993; Chem. Abstr. 1994, 120, 29495;
-
(1994)
Chem. Abstr.
, vol.120
, pp. 29495
-
-
Hummel, W.1
Gottwald, C.2
-
34
-
-
0028314451
-
-
b) T. Zelinski, J. Peters, M.-R. Kula, J. Biotechnol. 1994, 33, 283-29 2.
-
(1994)
J. Biotechnol.
, vol.33
, pp. 283-292
-
-
Zelinski, T.1
Peters, J.2
Kula, M.-R.3
-
35
-
-
0242405069
-
-
note
-
[13] A detailed description of these molecular biological studies covering the plasmid concept, and a new vector system in detail will be published independently from this contribution in due course; a brief experimental summary is already included in the experimental section.
-
-
-
-
36
-
-
0242656893
-
-
note
-
For example, compared with the wild-type ADH, the new alcohol dehydrogenase expressed in E. coli shows a preference for the substituted acetophenones Id towards the acetoacid esters 1j. The new alcohol dehydrogenase expressed in E. coli also led to a higher activity for p-chloroacetophenone compared with p-methylacetophenone. In case of the wild-type ADH the opposite effect was observed with higher activities for the latter substrate.
-
-
-
-
38
-
-
0242656894
-
-
note
-
These results will be published in detail in due course elsewhere.
-
-
-
|