-
1
-
-
0242554947
-
Local moments and inverse problem for fractal measures
-
S. Abenda, S. Demko, and G. Turchetti, "Local moments and inverse problem for fractal measures," Inv. Probl., vol. 8, pp. 739-750, 1992.
-
(1992)
Inv. Probl.
, vol.8
, pp. 739-750
-
-
Abenda, S.1
Demko, S.2
Turchetti, G.3
-
2
-
-
0002138618
-
A better way to compress images
-
Jan.
-
M. Barnsley and A. Sloan, "A better way to compress images," Byte, Jan. 1988.
-
(1988)
Byte
-
-
Barnsley, M.1
Sloan, A.2
-
3
-
-
0022421231
-
Iterated function systems and the global construction of fractals
-
M. Barnsley and S. Demko, "Iterated function systems and the global construction of fractals," in Proc. R. Soc. Lond., vol. A 399, 1985, pp. 243-275.
-
(1985)
Proc. R. Soc. Lond.
, vol.A399
, pp. 243-275
-
-
Barnsley, M.1
Demko, S.2
-
4
-
-
0000728697
-
Solution of an inverse problem for fractals and other sets
-
Apr.
-
M. F. Barnsley, V. Ervin, D. Hardin, and J. Lancaster, "Solution of an inverse problem for fractals and other sets," in Proc. Nat. Acad. Sci. USA, vol. 83, Apr. 1986, pp. 1975-1977.
-
(1986)
Proc. Nat. Acad. Sci. USA
, vol.83
, pp. 1975-1977
-
-
Barnsley, M.F.1
Ervin, V.2
Hardin, D.3
Lancaster, J.4
-
7
-
-
0344560497
-
-
J. Lévy-Véhel, E. Lutton, and C. Tricot, Eds. London, U.K.: Springer-Verlag
-
K. Berkner, A Wavelet-Based Solution to the Inverse Problem from Fractal Interpolation Functions, Fractals in Engineering, J. Lévy-Véhel, E. Lutton, and C. Tricot, Eds. London, U.K.: Springer-Verlag, 1997.
-
(1997)
A Wavelet-Based Solution to the Inverse Problem from Fractal Interpolation Functions, Fractals in Engineering
-
-
Berkner, K.1
-
8
-
-
3142541654
-
On the inverse fractal problem for two-dimensional attractors
-
A. Deliu, J. Geronimo, and R. Shonkwiler, "On the inverse fractal problem for two-dimensional attractors," Phil. Trans. R. Soc. Lond, vol. A 355, pp. 1017-1062, 1997.
-
(1997)
Phil. Trans. R. Soc. Lond
, vol.A355
, pp. 1017-1062
-
-
Deliu, A.1
Geronimo, J.2
Shonkwiler, R.3
-
9
-
-
0001661913
-
Products of random matrices and computer generation
-
P. Diaconis and M. Shahshani, "Products of random matrices and computer generation," Contem. Math., vol. 50, 1986.
-
(1986)
Contem. Math.
, vol.50
-
-
Diaconis, P.1
Shahshani, M.2
-
13
-
-
0000018732
-
Solving the inverse problem for measures using iterated function systems: A new approach
-
B. Forte and E. R. Vrscay, "Solving the inverse problem for measures using iterated function systems: a new approach," Adv. Appl. Prob., vol. 27, pp. 800-820, 1995.
-
(1995)
Adv. Appl. Prob.
, vol.27
, pp. 800-820
-
-
Forte, B.1
Vrscay, E.R.2
-
14
-
-
0030190415
-
Fractal image compression and recurrent iterated function systems
-
July
-
J. C. Hart, "Fractal image compression and recurrent iterated function systems,"IEEE Comput. Graph. Applicat., vol. 16, pp. 25-33, July 1996.
-
(1996)
IEEE Comput. Graph. Applicat.
, vol.16
, pp. 25-33
-
-
Hart, J.C.1
-
15
-
-
0242724086
-
Similarity hashing: A computer vision solution to the inverse problem of linear fractals, Preprint
-
July
-
J. C. Hart, W. O. Cochran, and P. J. Flynn, "Similarity hashing: A computer vision solution to the inverse problem of linear fractals, Preprint," in The NATO ASI: Fractal Image Encoding and Analysis, July 1995.
-
(1995)
The NATO ASI: Fractal Image Encoding and Analysis
-
-
Hart, J.C.1
Cochran, W.O.2
Flynn, P.J.3
-
16
-
-
0242639695
-
Inventing the formula of the tress-A solution of the inverse problem of the representation of self similar images, Preprint
-
July
-
E. Hocevar and W. G. Kropatsch, "Inventing the formula of the tress-A solution of the inverse problem of the representation of self similar images, Preprints," in The NATO ASI: Fractal Image Encoding and Analysis, July 1995.
-
(1995)
The NATO ASI: Fractal Image Encoding and Analysis
-
-
Hocevar, E.1
Kropatsch, W.G.2
-
17
-
-
0038297445
-
Making copies or originals of the nature-A feature based compressed fractal encoding of natural objects and its evaluation
-
E. Hocevar and W. Kropatsch, "Making copies or originals of the nature-A feature based compressed fractal encoding of natural objects and its evaluation," in Proc. SPIE Conf. Data/Image Coding, Compression and Encryption, San Diego, CA, July 1998.
-
Proc. SPIE Conf. Data/Image Coding, Compression and Encryption, San Diego, CA, July 1998
-
-
Hocevar, E.1
Kropatsch, W.2
-
18
-
-
0001265433
-
Fractals and self similarity
-
J. E. Hutchinson, "Fractals and self similarity," Indians Univ. Math. J., vol. 30, no. 5, 1981.
-
(1981)
Indians Univ. Math. J.
, vol.30
, Issue.5
-
-
Hutchinson, J.E.1
-
19
-
-
0242554946
-
A priori measurement of geometrical scaling factors for fractal image coding
-
A. Ibenthal and R.-R. Grigat, "A priori measurement of geometrical scaling factors for fractal image coding," in Proc. Fractals Engineering, Arcachon, France, 1997.
-
Proc. Fractals Engineering, Arcachon, France, 1997
-
-
Ibenthal, A.1
Grigat, R.-R.2
-
20
-
-
0032154770
-
Computing the kantorovich distance for images
-
Sept.
-
T. Kaijser, "Computing the Kantorovich distance for images," J. Math. Imag. Vis., Sept. vol. 9, no. 2, pp. 173-91, Sept. 1998.
-
(1998)
J. Math. Imag. Vis.
, vol.9
, Issue.2
, pp. 173-191
-
-
Kaijser, T.1
-
21
-
-
0028121934
-
-
M. M. Novak, Ed. Amsterdam, The Netherlands: Elsevier
-
J. Levy-Vehel and E. Lutton, Optimization of Fractal Functions using Genetic Algorithms, Fractals in the Natural and Applied Sciences, M. M. Novak, Ed. Amsterdam, The Netherlands: Elsevier, 1994, vol. A-41.
-
(1994)
Optimization of Fractal Functions Using Genetic Algorithms, Fractals in the Natural and Applied Sciences
, vol.A-41
-
-
Levy-Vehel, J.1
Lutton, E.2
-
22
-
-
23544435538
-
Contractive transformation image compression via mathematical programming
-
Ph.D. dissertation, Stanford Univ., Stanford, CA, 1995
-
R. A. Luenberger, "Contractive Transformation Image Compression via Mathematical Programming," Ph.D. dissertation, Stanford Univ., Stanford, CA, 1995.
-
(1995)
-
-
Luenberger, R.A.1
-
24
-
-
0002927685
-
Chaotic optimization and the construction of fractals: Solution of an inverse problem
-
G. Mantica and A. Sloan, "Chaotic optimization and the construction of fractals: Solution of an inverse problem," Complex Syst., vol. 3, pp. 37-62, 1989.
-
(1989)
Complex Syst.
, vol.3
, pp. 37-62
-
-
Mantica, G.1
Sloan, A.2
-
25
-
-
0242554936
-
Reductions in the search space for deriving a fractal set of fractal set of an arbitrary shape
-
D. J. Nettleton and R. Garigliano, "Reductions in the search space for deriving a fractal set of fractal set of an arbitrary shape," J. Math. Imag. Vis., vol. 6, pp. 379-392, 1996.
-
(1996)
J. Math. Imag. Vis.
, vol.6
, pp. 379-392
-
-
Nettleton, D.J.1
Garigliano, R.2
-
26
-
-
0024303437
-
An image algorithm for computing the Hausdorff distance efficiently in linear time
-
R. Shonkwiler, "An image algorithm for computing the Hausdorff distance efficiently in linear time," Inf. Process Lett., vol. 30, pp. 97-89, 1989.
-
(1989)
Inf. Process Lett.
, vol.30
, pp. 97-89
-
-
Shonkwiler, R.1
-
27
-
-
2742515611
-
An approach to the inverse IFS problem using the Kantorovich-metric, fractals
-
Trondheim, Norway, 1995
-
N. Wadströmer, "An approach to the inverse IFS problem using the Kantorovich-metric, fractals," in Proc. NATO Fractal Image Encoding and Analysis Advanced Study Institute, vol. 5, Trondheim, Norway, 1995, pp. 89-99.
-
(1995)
Proc. NATO Fractal Image Encoding and Analysis Advanced Study Institute
, vol.5
, pp. 89-99
-
-
Wadströmer, N.1
-
29
-
-
4243917932
-
Coding of fractal binary images with contractive set mappings composed of affine transformations
-
Ph.D., Linköping Univ., Linköping, Sweden
-
____, "Coding of Fractal Binary Images with Contractive Set Mappings Composed of Affine Transformations," Ph.D., Linköping Univ., Linköping, Sweden, 2001.
-
(2001)
-
-
Wadströmer, N.1
|