-
1
-
-
0009923694
-
On singular perturbation problems for the nonlinear Poisson equation
-
A. Ambroso, F. Méhats and P.A. Raviart, On singular perturbation problems for the nonlinear Poisson equation, Asymptotic Anal. 25 (2001), 39-91.
-
(2001)
Asymptotic Anal.
, vol.25
, pp. 39-91
-
-
Ambroso, A.1
Méhats, F.2
Raviart, P.A.3
-
2
-
-
0001298394
-
Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas
-
H. Brézis, F. Golse and R. Sentis, Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas, C. R. Acad. Sci. Paris 321 (1995), 953-959.
-
(1995)
C. R. Acad. Sci. Paris
, vol.321
, pp. 953-959
-
-
Brézis, H.1
Golse, F.2
Sentis, R.3
-
4
-
-
0034365798
-
Quasineutral limit of an Euler-Poisson system arising from plasma physics
-
S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations 25 (2000), 1099-1113.
-
(2000)
Comm. Partial Differential Equations
, vol.25
, pp. 1099-1113
-
-
Cordier, S.1
Grenier, E.2
-
5
-
-
0002209968
-
On a one-dimensional steady-state hydrodynamic model for semiconductors
-
P. Degond and P. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett. 3 (1990), 25-29.
-
(1990)
Appl. Math. Lett.
, vol.3
, pp. 25-29
-
-
Degond, P.1
Markowich, P.2
-
6
-
-
0002666718
-
A steady state potential flow model for semiconductors
-
P. Degond and P. Markowich, A steady state potential flow model for semiconductors, Ann. Mat. Pura Appl. (4) (1993), 87-98.
-
(1993)
Ann. Mat. Pura Appl.
, Issue.4
, pp. 87-98
-
-
Degond, P.1
Markowich, P.2
-
7
-
-
0015746830
-
Semilinear elliptic boundary value problems with small parameters
-
P.C. Fife, Semilinear elliptic boundary value problems with small parameters, Arch. Rational Mech. Anal. 52 (1973), 205-232.
-
(1973)
Arch. Rational Mech. Anal.
, vol.52
, pp. 205-232
-
-
Fife, P.C.1
-
8
-
-
80053227201
-
Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors
-
I.M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Comm. Partial Differential Equations 17 (1992), 553-577.
-
(1992)
Comm. Partial Differential Equations
, vol.17
, pp. 553-577
-
-
Gamba, I.M.1
-
9
-
-
0007329625
-
A viscous approximation for a 2-D steady semiconductor or transonic gas dynamic flow: Existence theorem for potential flow
-
I.M. Gamba and C.S. Morawetz, A viscous approximation for a 2-D steady semiconductor or transonic gas dynamic flow: existence theorem for potential flow, Comm. Pure Appl. Math. XLIX (1996), 999-1049.
-
(1996)
Comm. Pure Appl. Math.
, vol.49
, pp. 999-1049
-
-
Gamba, I.M.1
Morawetz, C.S.2
-
12
-
-
0034274265
-
Relaxation of the isothermal Euler-Poisson system to the drift-diffusion equations
-
S. Junca and M. Rascle, Relaxation of the isothermal Euler-Poisson system to the drift-diffusion equations, Quart. Appl. Math. LVIII (2000), 511-521.
-
(2000)
Quart. Appl. Math.
, vol.58
, pp. 511-521
-
-
Junca, S.1
Rascle, M.2
-
13
-
-
0033475119
-
A hierarchy of hydrodynamic models for plasmas. Zero-relaxation-time limits
-
A. Jüngel and Y.J. Peng, A hierarchy of hydrodynamic models for plasmas. Zero-relaxation-time limits, Comm. Partial Differential Equations 24 (1999), 1007-1033.
-
(1999)
Comm. Partial Differential Equations
, vol.24
, pp. 1007-1033
-
-
Jüngel, A.1
Peng, Y.J.2
-
14
-
-
0034342144
-
Zero-relaxation-time limits in hydrodynamic models for plasmas revisited
-
A. Jüngel and Y.J. Peng, Zero-relaxation-time limits in hydrodynamic models for plasmas revisited, Z. Angew. Math. Phys. 51 (2000), 385-396.
-
(2000)
Z. Angew. Math. Phys.
, vol.51
, pp. 385-396
-
-
Jüngel, A.1
Peng, Y.J.2
-
15
-
-
84971109210
-
Weak solutions to a hydrodynamic model for semiconductors: The Cauchy problem
-
P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors: the Cauchy problem, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 115-131.
-
(1995)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.125
, pp. 115-131
-
-
Marcati, P.1
Natalini, R.2
-
18
-
-
0001253780
-
p-estimate for the gradient of solutions of second order elliptic divergence equations
-
p-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa 17 (1963), 189-206.
-
(1963)
Ann. Scuola Norm. Sup. Pisa
, vol.17
, pp. 189-206
-
-
Meyers, N.G.1
-
19
-
-
0036005033
-
Asymptotic limits of one-dimensional hydrodynamic models for plasmas and semiconductors
-
Y.J. Peng, Asymptotic limits of one-dimensional hydrodynamic models for plasmas and semiconductors, Chinese Ann. Math. Ser. B 23 (2002), 25-36.
-
(2002)
Chinese Ann. Math. Ser. B
, vol.23
, pp. 25-36
-
-
Peng, Y.J.1
-
20
-
-
58149362452
-
Global solutions to the isothermal Euler-Poisson system with arbitrary large data
-
F. Poupaud, M. Rascle and J.P. Vila, Global solutions to the isothermal Euler-Poisson system with arbitrary large data, J. Differential Equations 123 (1995), 93-121.
-
(1995)
J. Differential Equations
, vol.123
, pp. 93-121
-
-
Poupaud, F.1
Rascle, M.2
Vila, J.P.3
-
21
-
-
0002386581
-
On singular perturbation problems for the nonlinear Poisson equation or: A mathematical approach to electrostatic sheaths and plasma erosion
-
P. Raviart, On singular perturbation problems for the nonlinear Poisson equation or: A mathematical approach to electrostatic sheaths and plasma erosion, in: Lecture Notes of the Summer School in Ile d'Oléron, France, 1997, pp. 452-539.
-
(1997)
Lecture Notes of the Summer School in Ile d'Oléron, France
, pp. 452-539
-
-
Raviart, P.1
-
22
-
-
0038101707
-
Quasi-neutral limit for the Euler-Poisson system
-
M. Slemrod and N. Sternberg, Quasi-neutral limit for the Euler-Poisson system, J. Nonlinear Sci. 11 (2001), 193-209.
-
(2001)
J. Nonlinear Sci.
, vol.11
, pp. 193-209
-
-
Slemrod, M.1
Sternberg, N.2
-
23
-
-
21344492574
-
Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices
-
B. Zhang, Convergence of the Godunov scheme for a simplified one-dimensional hydrodynamic model for semiconductor devices, Comm. Math. Phys. 157 (1993), 1-22.
-
(1993)
Comm. Math. Phys.
, vol.157
, pp. 1-22
-
-
Zhang, B.1
|