메뉴 건너뛰기




Volumn 41, Issue 1, 2001, Pages 191-206

Stability in the numerical solution of linear parabolic equations with a delay term

Author keywords

Contractivity properties; Error bounds; Error propagation; Numerical stability; Parabolic equations with delay terms

Indexed keywords


EID: 0242401393     PISSN: 00063835     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1021930104326     Document Type: Article
Times cited : (44)

References (17)
  • 1
    • 0021374208 scopus 로고
    • Stability properties of numerical methods for solving delay differential equations
    • A. N. Al-Mutib, Stability properties of numerical methods for solving delay differential equations, J. Comput. Appl. Math., 10 (1984), pp. 71-79.
    • (1984) J. Comput. Appl. Math. , vol.10 , pp. 71-79
    • Al-Mutib, A.N.1
  • 2
    • 0016463497 scopus 로고
    • Special stability problems for functional differential equations
    • V. K. Barwell, Special stability problems for functional differential equations, BIT, 15 (1975), pp. 130-135.
    • (1975) BIT , vol.15 , pp. 130-135
    • Barwell, V.K.1
  • 3
    • 0038946973 scopus 로고
    • Existence and stability of fixed points for a discretized nonlinear reaction-diffusion equation with delay
    • D. J. Higham and T. Sardar, Existence and stability of fixed points for a discretized nonlinear reaction-diffusion equation with delay, Appl. Numer. Math., 18 (1995), pp. 155-173.
    • (1995) Appl. Numer. Math. , vol.18 , pp. 155-173
    • Higham, D.J.1    Sardar, T.2
  • 4
    • 0030289939 scopus 로고    scopus 로고
    • On the stability of adaptations of Runge-Kutta methods to systems of delay differential equations
    • K. J. in't Hout, On the stability of adaptations of Runge-Kutta methods to systems of delay differential equations, Appl. Numer. Math., 22 (1996), pp. 237-250.
    • (1996) Appl. Numer. Math. , vol.22 , pp. 237-250
    • In't Hout, K.J.1
  • 5
    • 0031506225 scopus 로고    scopus 로고
    • Stability analysis of Runge-Kutta methods for systems of delay differential equations
    • K. J. in't Hout, Stability analysis of Runge-Kutta methods for systems of delay differential equations, IMA J. Numer. Anal., 17 (1997), pp. 17-27.
    • (1997) IMA J. Numer. Anal. , vol.17 , pp. 17-27
    • In't Hout, K.J.1
  • 6
    • 0000254054 scopus 로고
    • The stability of θ-methods for systems of delay differential equations
    • K. J. in't Hout, The stability of θ-methods for systems of delay differential equations, Ann. Numer. Math., 1 (1994), pp. 323-334.
    • (1994) Ann. Numer. Math. , vol.1 , pp. 323-334
    • In't Hout, K.J.1
  • 7
    • 0000714267 scopus 로고
    • The stability of the θ-methods in the numerical solution of delay differential equations
    • M. Z. Liu and M. N. Spijker, The stability of the θ-methods in the numerical solution of delay differential equations, IMA J. Num. Anal., 10 (1990), pp. 31-48.
    • (1990) IMA J. Num. Anal. , vol.10 , pp. 31-48
    • Liu, M.Z.1    Spijker, M.N.2
  • 8
    • 0001044031 scopus 로고
    • Asymptotic stability analysis of θ-methods for functional differential equations
    • Z. Jackiewicz, Asymptotic stability analysis of θ-methods for functional differential equations, Numer. Math., 43 (1984), pp. 389-396.
    • (1984) Numer. Math. , vol.43 , pp. 389-396
    • Jackiewicz, Z.1
  • 9
    • 0031210214 scopus 로고    scopus 로고
    • Numerical stability, resolvent conditions and delay differential equations
    • M. N. Spijker, Numerical stability, resolvent conditions and delay differential equations, Appl. Numer. Math., 24, (1997), pp. 233-246.
    • (1997) Appl. Numer. Math. , vol.24 , pp. 233-246
    • Spijker, M.N.1
  • 10
    • 85031577772 scopus 로고    scopus 로고
    • Using resolvent conditions to obtain new stability results for θ-methods for delay differential equations
    • to appear
    • E. G. Van den Heuvel, Using resolvent conditions to obtain new stability results for θ-methods for delay differential equations, IMA J. Numer. Anal., to appear.
    • IMA J. Numer. Anal.
    • Van Den Heuvel, E.G.1
  • 11
    • 0034229834 scopus 로고    scopus 로고
    • New stability results for Runge-Kutta methods adapted to delay differential equations
    • E. G. Van den Heuvel, New stability results for Runge-Kutta methods adapted to delay differential equations, Appl. Numer. Math., 34, (2000), pp. 293-308.
    • (2000) Appl. Numer. Math. , vol.34 , pp. 293-308
    • Van Den Heuvel, E.G.1
  • 12
    • 0021376613 scopus 로고
    • Stability in linear multistep methods for pure delay equations
    • P. J. Van der Houwen and B. P. Sommeijer, Stability in linear multistep methods for pure delay equations, J. Comput. Appl. Math, 10 (1984), pp. 55-63.
    • (1984) J. Comput. Appl. Math , vol.10 , pp. 55-63
    • Van Der Houwen, P.J.1    Sommeijer, B.P.2
  • 13
    • 0022016198 scopus 로고
    • The stability of difference formulas for delay differential equations
    • D. S. Watanabe and M. G. Roth, The stability of difference formulas for delay differential equations, SIAM. Numer. Anal., 22 (1985), pp. 132-145.
    • (1985) SIAM. Numer. Anal. , vol.22 , pp. 132-145
    • Watanabe, D.S.1    Roth, M.G.2
  • 15
    • 0040944319 scopus 로고
    • On the P-stability of one-step collocation for delay differential equations
    • M. Zennaro, On the P-stability of one-step collocation for delay differential equations, Internat. Ser. Numer. Math., 74 (1985), pp. 334-343.
    • (1985) Internat. Ser. Numer. Math. , vol.74 , pp. 334-343
    • Zennaro, M.1
  • 16
    • 0000750163 scopus 로고    scopus 로고
    • P-stability properties of Runge-Kutta methods for delay differential equations
    • M. Zennaro, P-stability properties of Runge-Kutta methods for delay differential equations, Numer. Math., 49, pp. 305-318.
    • Numer. Math. , vol.49 , pp. 305-318
    • Zennaro, M.1
  • 17
    • 0031515211 scopus 로고    scopus 로고
    • The method of lines for parabolic differential-functional equations
    • B. Zubik-Kowal, The method of lines for parabolic differential-functional equations, IMA J. Numer. Anal., 17 (1997), pp. 103-123.
    • (1997) IMA J. Numer. Anal. , vol.17 , pp. 103-123
    • Zubik-Kowal, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.