메뉴 건너뛰기




Volumn 94, Issue 2, 1999, Pages 1177-1217

On some integrable cases in surface theory

(1)  Korotkin, D A a  

a NONE

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0242380591     PISSN: 10723374     EISSN: 15738795     Source Type: Journal    
DOI: 10.1007/BF02364876     Document Type: Conference Paper
Times cited : (7)

References (22)
  • 3
    • 0002056823 scopus 로고
    • Sopra alcune nuove classi di superficie e di sistemi tripli ortogonali
    • L. Bianchi, "Sopra alcune nuove classi di superficie e di sistemi tripli ortogonali," Ann. Mat. 2, 18, 301-358 (1890).
    • (1890) Ann. Mat. 2 , vol.18 , pp. 301-358
    • Bianchi, L.1
  • 5
    • 0003061298 scopus 로고
    • Surfaces in terms of 2 × 2 matrices. Old and new integrable cases
    • A. Bobenko, "Surfaces in terms of 2 × 2 matrices. Old and new integrable cases," Aspects Math., 23 (1993).
    • (1993) Aspects Math. , vol.23
    • Bobenko, A.1
  • 6
    • 0003351912 scopus 로고
    • Theta-functions on Riemann surfaces
    • J. D. Fay, "Theta-functions on Riemann surfaces," Led. Notes Math., 352 (1973).
    • (1973) Led. Notes Math. , vol.352
    • Fay, J.D.1
  • 8
    • 53149090029 scopus 로고
    • Liouville theorem and inverse scattering method
    • A. Its, "Liouville theorem and inverse scattering method," J. Sov. Math., 31, No. 6, 113-123 (1985).
    • (1985) J. Sov. Math. , vol.31 , Issue.6 , pp. 113-123
    • Its, A.1
  • 9
    • 0005214575 scopus 로고
    • Harmonic maps and integrable systems
    • P. Fordy and John C. Wood, "Harmonic maps and integrable systems," Asp. Math., 23, (1993).
    • (1993) Asp. Math. , vol.23
    • Fordy, P.1    Wood, J.C.2
  • 10
    • 53149141979 scopus 로고
    • 3 and deformation of hyperelliptic curves
    • 3 and deformation of hyperelliptic curves," Mat. Zametki, 52, No. 3, 78-88 (1992).
    • (1992) Mat. Zametki , vol.52 , Issue.3 , pp. 78-88
    • Korotkin, D.1    Reznik, V.2
  • 11
    • 0010000533 scopus 로고
    • Finite-gap solutions of the stationary axisymmetric Einstein equation in vacuum
    • D. Korotkin, "Finite-gap solutions of the stationary axisymmetric Einstein equation in vacuum," Theor. Math. Phys., 77, 1018-1031 (1989).
    • (1989) Theor. Math. Phys. , vol.77 , pp. 1018-1031
    • Korotkin, D.1
  • 12
    • 0002855272 scopus 로고
    • Algebraic-geometrical solutions of gravitational equations
    • D. Korotkin and V. Matveev, "Algebraic-geometrical solutions of gravitational equations," Leningr. Math. J., 1, 379-408 (1990).
    • (1990) Leningr. Math. J. , vol.1 , pp. 379-408
    • Korotkin, D.1    Matveev, V.2
  • 13
    • 34147137894 scopus 로고
    • Elliptic solutions of stationary axisymmetric Einstein equations
    • D. Korotkin, "Elliptic solutions of stationary axisymmetric Einstein equations," Class. Quant. Gravity, 10, 2587-2614 (1993).
    • (1993) Class. Quant. Gravity , vol.10 , pp. 2587-2614
    • Korotkin, D.1
  • 15
    • 0000187921 scopus 로고
    • Integrable systems describing surfaces of non-constant curvature
    • D. Levi and A. Sym, "Integrable systems describing surfaces of non-constant curvature," Lett. A, 149, 381-387 (1990).
    • (1990) Lett. A , vol.149 , pp. 381-387
    • Levi, D.1    Sym, A.2
  • 16
    • 33646022362 scopus 로고
    • Are the stationary, axisymmetric Einstein equations completely integrable?
    • D. Maison, "Are the stationary, axisymmetric Einstein equations completely integrable?" Phys. Rev. Lett., 41, 521-523 (1978).
    • (1978) Phys. Rev. Lett. , vol.41 , pp. 521-523
    • Maison, D.1
  • 19
    • 85034519330 scopus 로고
    • On the harmony of the Ernst equation
    • N model (1982), pp. 252-275.
    • (1982) N Model , pp. 252-275
    • Reina, C.1
  • 20
    • 0000315041 scopus 로고
    • Soliton surfaces and their applications
    • A. Sym, "Soliton surfaces and their applications," Lect. Notes Phys., 239, 154-231 (1985).
    • (1985) Lect. Notes Phys. , vol.239 , pp. 154-231
    • Sym, A.1
  • 22
    • 85034509435 scopus 로고    scopus 로고
    • private communication
    • U. Eitner, private communication.
    • Eitner, U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.