-
1
-
-
3543127661
-
-
D. C. Ralph, C. T. Black, and M. Tinkham, Phys. Rev. Lett. 76, 688 (1996); 78, 4087 (1997).
-
(1996)
Phys. Rev. Lett.
, vol.76
, pp. 688
-
-
Ralph, D.C.1
Black, C.T.2
Tinkham, M.3
-
2
-
-
4243682262
-
-
D. C. Ralph, C. T. Black, and M. Tinkham, Phys. Rev. Lett. 76, 688 (1996); 78, 4087 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 4087
-
-
-
5
-
-
36749115031
-
-
R. W. Richardson, J. Math. Phys. 18, 1802 (1977), contains a complete set of references on the subject, starting from R. W. Richardson, Phys. Lett. 3, 277 (1963).
-
(1977)
J. Math. Phys.
, vol.18
, pp. 1802
-
-
Richardson, R.W.1
-
6
-
-
50549209745
-
-
R. W. Richardson, J. Math. Phys. 18, 1802 (1977), contains a complete set of references on the subject, starting from R. W. Richardson, Phys. Lett. 3, 277 (1963).
-
(1963)
Phys. Lett.
, vol.3
, pp. 277
-
-
Richardson, R.W.1
-
9
-
-
0003965731
-
-
Masson, Paris
-
M. Gaudin, La Fonction d'Onde de Bethe (Masson, Paris, 1983); J. Phys. 37, 1087 (1976); Travaux de Michel Gaudin, Modèles Exactement Résolus (Les Èditions de Physique, 1995).
-
(1983)
La Fonction d'Onde de Bethe
-
-
Gaudin, M.1
-
10
-
-
0001247698
-
-
M. Gaudin, La Fonction d'Onde de Bethe (Masson, Paris, 1983); J. Phys. 37, 1087 (1976); Travaux de Michel Gaudin, Modèles Exactement Résolus (Les Èditions de Physique, 1995).
-
(1976)
J. Phys.
, vol.37
, pp. 1087
-
-
-
11
-
-
33744616788
-
-
Les Èditions de Physique
-
M. Gaudin, La Fonction d'Onde de Bethe (Masson, Paris, 1983); J. Phys. 37, 1087 (1976); Travaux de Michel Gaudin, Modèles Exactement Résolus (Les Èditions de Physique, 1995).
-
(1995)
Modèles Exactement Résolus
-
-
De Michel Gaudin, T.1
-
12
-
-
36149036730
-
-
H. M. Babujian, J. Phys. A 26, 6981 (1993); 27, 7753 (1994); H. M. Babujian and R. Flume, Mod. Phys. Lett. A 9, 2029 (1994).
-
(1993)
J. Phys. A
, vol.26
, pp. 6981
-
-
Babujian, H.M.1
-
13
-
-
36149036730
-
-
H. M. Babujian, J. Phys. A 26, 6981 (1993); 27, 7753 (1994); H. M. Babujian and R. Flume, Mod. Phys. Lett. A 9, 2029 (1994).
-
(1994)
J. Phys. A
, vol.27
, pp. 7753
-
-
-
15
-
-
0035908046
-
-
L. Amico, A. Di Lorenzo, and A. Osterloh, Phys. Rev. Lett. 86, 5759 (2001); Nucl. Phys. B 614, 449 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 5759
-
-
Amico, L.1
Di Lorenzo, A.2
Osterloh, A.3
-
16
-
-
0035814016
-
-
L. Amico, A. Di Lorenzo, and A. Osterloh, Phys. Rev. Lett. 86, 5759 (2001); Nucl. Phys. B 614, 449 (2001).
-
(2001)
Nucl. Phys. B
, vol.614
, pp. 449
-
-
-
17
-
-
0002125936
-
-
edited by M.-L. Ge, World Scientific, Singapore
-
E. K. Sklyanin, in Quantum Group and Quantum Integrable Systems, Nankai Lectures in Mathematical Physics, edited by M.-L. Ge (World Scientific, Singapore, 1992) p. 63-97.
-
(1992)
Quantum Group and Quantum Integrable Systems, Nankai Lectures in Mathematical Physics
, pp. 63-97
-
-
Sklyanin, E.K.1
-
22
-
-
0037171188
-
-
After the bulk of this work had been completed, three papers appeared in which some such correlation functions indeed were calculated: L. Amico and A. Osterloh, Phys. Rev. Lett. 88, 127003 (2002); H.-Q. Zhou, J. Links, R.H. McKenzie, and M.D. Gould, Phys. Rev. B 65, 060502 (2002) and, by the same authors, very recently also cond-mat/0110105 (unpublished).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 127003
-
-
Amico, L.1
Osterloh, A.2
-
23
-
-
0036471305
-
-
cond-mat/0110105 (unpublished)
-
After the bulk of this work had been completed, three papers appeared in which some such correlation functions indeed were calculated: L. Amico and A. Osterloh, Phys. Rev. Lett. 88, 127003 (2002); H.-Q. Zhou, J. Links, R.H. McKenzie, and M.D. Gould, Phys. Rev. B 65, 060502 (2002) and, by the same authors, very recently also cond-mat/0110105 (unpublished).
-
(2002)
Phys. Rev. B
, vol.65
, pp. 060502
-
-
Zhou, H.-Q.1
Links, J.2
McKenzie, R.H.3
Gould, M.D.4
-
24
-
-
0034708852
-
-
k Wess-Zumino-Witten conformal field theory, in the singular limit when the level k goes to - 2, see G. Sierra, Nucl. Phys. B 572, 517 (2000).
-
(2000)
Nucl. Phys. B
, vol.572
, pp. 517
-
-
Sierra, G.1
-
25
-
-
33744710507
-
-
note
-
i given in Ref. 5 is related to our Eq. (10) by the transformation (6).
-
-
-
-
26
-
-
33744600510
-
-
Private communication
-
l diverge proportional to g for large g [R. Richardson (private communication)].
-
-
-
Richardson, R.1
-
28
-
-
33744628224
-
-
note
-
In fact, it is possible to satisfy Eq. (47), and hence maintain integrability, using more general choices of K: for the XXX model, Eq. (47) holds for an arbitrary 2 x 2 K-matrix. For the XXZ model, Eq. (47) holds for any diagonal K-matrix, or any purely-off-diagonal K-matrix (i.e., vanishing diagonal elements). For both the XXX and XXZ models, though, only the case of a diagonal K-matrix is solvable by conventional Betheansatz methods. The off-diagonal cases are solvable, however, using Sklyanin's method of separation of variables.
-
-
-
-
29
-
-
33744691510
-
-
note
-
Note that our derivation below of the mutually commuting operators in the quasiclassical limit does not need to introduce the notion of a "quantum determinant," and thus is slightly more direct than the method used by Sklyanin in Ref. 12.
-
-
-
|