메뉴 건너뛰기




Volumn 377, Issue 1-3, 2004, Pages 69-81

Kantorovich type operator inequalities via the Specht ratio

Author keywords

Chaotic order; Furuta inequality; Grand Furuta inequality; Kantorovich inequality; L wner Heinz theorem; Specht ratio

Indexed keywords

CHAOS THEORY; GEOMETRY; THEOREM PROVING;

EID: 0242335055     PISSN: 00243795     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.laa.2003.07.008     Document Type: Article
Times cited : (1)

References (22)
  • 1
    • 2442592867 scopus 로고
    • Log-majorization and complementary Golden-Thompson type inequalities
    • Ando T., Hiai F. Log-majorization and complementary Golden-Thompson type inequalities. Linear Algebra Appl. 197/198:1994;113-131.
    • (1994) Linear Algebra Appl. , vol.197-198 , pp. 113-131
    • Ando, T.1    Hiai, F.2
  • 2
    • 0002695534 scopus 로고
    • Furuta's inequality and its mean theoretic approach
    • Fujii M. Furuta's inequality and its mean theoretic approach. J. Operator Theory. 23:1990;67-72.
    • (1990) J. Operator Theory , vol.23 , pp. 67-72
    • Fujii, M.1
  • 3
    • 21444459455 scopus 로고    scopus 로고
    • Mean theoretic approach to the grand Furuta inequality
    • Fujii M., Kamei E. Mean theoretic approach to the grand Furuta inequality. Proc. Amer. Math. Soc. 124:1996;2751-2756.
    • (1996) Proc. Amer. Math. Soc. , vol.124 , pp. 2751-2756
    • Fujii, M.1    Kamei, E.2
  • 4
    • 0242327128 scopus 로고    scopus 로고
    • Characterizations of usual and chaotic order via Furuta and Kantorovich inequalities
    • Fujii M., Hashimoto M., Seo Y., Yanagida M. Characterizations of usual and chaotic order via Furuta and Kantorovich inequalities. Sci. Math. 3:2000;405-418.
    • (2000) Sci. Math. , vol.3 , pp. 405-418
    • Fujii, M.1    Hashimoto, M.2    Seo, Y.3    Yanagida, M.4
  • 5
    • 0001492185 scopus 로고    scopus 로고
    • Operator inequalities related to Cauchy-Schwarz and Hölder-McCarthy inequalities
    • Fujii M., Izumino S., Nakamoto R., Seo Y. Operator inequalities related to Cauchy-Schwarz and Hölder-McCarthy inequalities. Nihonkai Math. J. 8(2):1997;117-122.
    • (1997) Nihonkai Math. J. , vol.8 , Issue.2 , pp. 117-122
    • Fujii, M.1    Izumino, S.2    Nakamoto, R.3    Seo, Y.4
  • 6
    • 0242358523 scopus 로고    scopus 로고
    • A short proof of the best possibility for the grand Furuta inequality
    • Fujii M., Matsumoto A., Nakamoto R. A short proof of the best possibility for the grand Furuta inequality. J. Inequal. Appl. 4:1999;339-344.
    • (1999) J. Inequal. Appl. , vol.4 , pp. 339-344
    • Fujii, M.1    Matsumoto, A.2    Nakamoto, R.3
  • 7
    • 84968476176 scopus 로고
    • (p+2r)/q for r ≥ 0, p ≥ 0, q≥ 1 with (1+2r) q ≥ p+2r
    • (p+2r)/q for r≥0, p≥0, q≥1 with (1+2r)q≥p+2r Proc. Amer. Math. Soc. 101:1987;85-88.
    • (1987) Proc. Amer. Math. Soc. , vol.101 , pp. 85-88
    • Furuta, T.1
  • 8
    • 0000047447 scopus 로고
    • Elementary proof of an order preserving inequality
    • Furuta T. Elementary proof of an order preserving inequality. Proc. Japan Acad. 65:1989;126.
    • (1989) Proc. Japan Acad. , vol.65 , pp. 126
    • Furuta, T.1
  • 9
    • 0039807185 scopus 로고
    • Extension of the Furuta inequality and Ando-Hiai log-majorization
    • Furuta T. Extension of the Furuta inequality and Ando-Hiai log-majorization. Linear Algebra Appl. 219:1995;139-155.
    • (1995) Linear Algebra Appl. , vol.219 , pp. 139-155
    • Furuta, T.1
  • 10
    • 0000255314 scopus 로고    scopus 로고
    • Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities
    • Furuta T. Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities. J. Inequal. Appl. 2:1998;137-148.
    • (1998) J. Inequal. Appl. , vol.2 , pp. 137-148
    • Furuta, T.1
  • 11
    • 22444452711 scopus 로고    scopus 로고
    • Simplified proof of an order preserving operator inequality
    • Furuta T. Simplified proof of an order preserving operator inequality. Proc. Japan. Acad. 74:1998;114.
    • (1998) Proc. Japan. Acad. , vol.74 , pp. 114
    • Furuta, T.1
  • 12
    • 0000817760 scopus 로고    scopus 로고
    • Results under log A≥ log B can be derived from ones under A ≥ B≥ 0 by Uchiyama's method - Associated with Furuta and Kantorovich type operator inequalities
    • Furuta T. Results under. logA≥logB can be derived from ones under A≥B≥0 by Uchiyama's method - associated with Furuta and Kantorovich type operator inequalities Math. Inequal. Appl. 3:2000;423-436.
    • (2000) Math. Inequal. Appl. , vol.3 , pp. 423-436
    • Furuta, T.1
  • 13
    • 0000974027 scopus 로고
    • A satellite to Furuta's inequality
    • Kamei E. A satellite to Furuta's inequality. Math. Japon. 33:1988;883-886.
    • (1988) Math. Japon , vol.33 , pp. 883-886
    • Kamei, E.1
  • 14
  • 15
    • 0002339170 scopus 로고
    • Zur Theorie der elementaren Mittel
    • Specht W. Zur Theorie der elementaren Mittel. Math. Z. 74:1960;91-98.
    • (1960) Math. Z. , vol.74 , pp. 91-98
    • Specht, W.1
  • 16
    • 21844516674 scopus 로고    scopus 로고
    • Best possibility of the Furuta inequality
    • Tanahashi K. Best possibility of the Furuta inequality. Proc. Amer. Math. Soc. 124:1996;141-146.
    • (1996) Proc. Amer. Math. Soc. , vol.124 , pp. 141-146
    • Tanahashi, K.1
  • 17
    • 22844456427 scopus 로고    scopus 로고
    • The best possibility of the grand Furuta inequality
    • Tanahashi K. The best possibility of the grand Furuta inequality. Proc. Amer. Math. Soc. 128:2000;511-519.
    • (2000) Proc. Amer. Math. Soc. , vol.128 , pp. 511-519
    • Tanahashi, K.1
  • 18
    • 0010108004 scopus 로고    scopus 로고
    • Specht's ratio in the Young inequality
    • Tominaga M. Specht's ratio in the Young inequality. Sci. Math. Japon. 55(3):2002;585-588.
    • (2002) Sci. Math. Japon. , vol.55 , Issue.3 , pp. 585-588
    • Tominaga, M.1
  • 19
    • 0000612851 scopus 로고
    • Rounding off-errors in matrix processes
    • Turing A.M. Rounding off-errors in matrix processes. Quart. J. Mech. Appl. Math. 1:1948;287-308.
    • (1948) Quart. J. Mech. Appl. Math. , vol.1 , pp. 287-308
    • Turing, A.M.1
  • 20
    • 0000695511 scopus 로고    scopus 로고
    • Some exponential operator inequalities
    • Uchiyama M. Some exponential operator inequalities. Math. Inequal. Appl. 2:1999;469-471.
    • (1999) Math. Inequal. Appl. , vol.2 , pp. 469-471
    • Uchiyama, M.1
  • 21
    • 0242358521 scopus 로고    scopus 로고
    • Simplified proof of Tanahashi's result on the best possibility of generalized Furuta inequality
    • Yamazaki T. Simplified proof of Tanahashi's result on the best possibility of generalized Furuta inequality. Math. Inequal. Appl. 2:1999;473-477.
    • (1999) Math. Inequal. Appl. , vol.2 , pp. 473-477
    • Yamazaki, T.1
  • 22
    • 0002253177 scopus 로고    scopus 로고
    • Characterizations of chaotic order associated with Kantorovich inequality
    • Yamazaki T., Yanagida M. Characterizations of chaotic order associated with Kantorovich inequality. Sci. Math. 2:1999;37-50.
    • (1999) Sci. Math. , vol.2 , pp. 37-50
    • Yamazaki, T.1    Yanagida, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.