메뉴 건너뛰기




Volumn 16, Issue 7, 2003, Pages 1047-1051

Periodic Solutions of a Delayed Periodic Logistic Equation

Author keywords

Coincidence degree; Delayed logistic equation; Positive periodic solution

Indexed keywords

FUNCTIONS; MATHEMATICAL OPERATORS; THEOREM PROVING;

EID: 0242333295     PISSN: 08939659     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-9659(03)90093-0     Document Type: Article
Times cited : (38)

References (9)
  • 1
    • 0035285146 scopus 로고    scopus 로고
    • Periodic solutions of periodic delay Lotka-Volterra equations and systems
    • Y. Li and Y. Kuang, Periodic solutions of periodic delay Lotka-Volterra equations and systems, J. Math. Anal. Appl. 265 (1), 260-280, (2001).
    • (2001) J. Math. Anal. Appl. , vol.265 , Issue.1 , pp. 260-280
    • Li, Y.1    Kuang, Y.2
  • 2
    • 0342484417 scopus 로고    scopus 로고
    • Global attractivity and oscillation in a nonlinear delay equation
    • J. Yan and Q. Feng, Global attractivity and oscillation in a nonlinear delay equation, Nonlinear Anal. 43 (1), 101-108, (2001).
    • (2001) Nonlinear Anal. , vol.43 , Issue.1 , pp. 101-108
    • Yan, J.1    Feng, Q.2
  • 4
    • 0002727168 scopus 로고
    • On a periodic delay population model
    • B.S. Lalli and B.G. Zhang, On a periodic delay population model, Quart. Appl. Math. 52 (1), 35-42, (1994).
    • (1994) Quart. Appl. Math. , vol.52 , Issue.1 , pp. 35-42
    • Lalli, B.S.1    Zhang, B.G.2
  • 6
    • 0001459814 scopus 로고
    • Periodic solutions of single species models with periodic delay
    • H.I. Freedman and J. Wu, Periodic solutions of single species models with periodic delay, SIAM J. Math. Anal. 23 (3), 689-701, (1992).
    • (1992) SIAM J. Math. Anal. , vol.23 , Issue.3 , pp. 689-701
    • Freedman, H.I.1    Wu, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.