메뉴 건너뛰기




Volumn 5, Issue , 2000, Pages 85-90

On the cover time of planar graphs

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0242306078     PISSN: None     EISSN: 1083589X     Source Type: Journal    
DOI: 10.1214/ECP.v5-1022     Document Type: Article
Times cited : (34)

References (20)
  • 1
    • 0040062611 scopus 로고
    • On the Time Taken by Random Walks on Finite Groups to Visit Every State
    • D. Aldous, On the Time Taken by Random Walks on Finite Groups to Visit Every State, Wahrsch. Verw. Gebeite 62 (1983), 361-374.
    • (1983) Wahrsch. Verw. Gebeite , vol.62 , pp. 361-374
    • Aldous, D.1
  • 3
    • 0030515011 scopus 로고    scopus 로고
    • Harmonic Functions on Planar and Almost Planar Graphs and Manifolds, Via Circle Packings
    • I. Benjamini and O. Schramm, Harmonic Functions on Planar and Almost Planar Graphs and Manifolds, Via Circle Packings, Invent. Math. 126 (1996), 565-587.
    • (1996) Invent. Math. , vol.126 , pp. 565-587
    • Benjamini, I.1    Schramm, O.2
  • 5
    • 0040898784 scopus 로고    scopus 로고
    • The electrical resistance of a graph captures its commute and cover times
    • A. Chandra, P. Raghavan, W. Russo, R. Smolensky and P. Tiwari, The electrical resistance of a graph captures its commute and cover times, Comput. Complexity 6 (1996/97), 312-340.
    • (1996) Comput. Complexity , vol.6 , pp. 312-340
    • Chandra, A.1    Raghavan, P.2    Russo, W.3    Smolensky, R.4    Tiwari, P.5
  • 7
  • 8
    • 84990631366 scopus 로고
    • A Tight Upper Bound on the Cover Time for Random Walks on Graphs
    • U. Feige, A Tight Upper Bound on the Cover Time for Random Walks on Graphs, Random Struct. Alg. 6 (1995), 51-54.
    • (1995) Random Struct. Alg. , vol.6 , pp. 51-54
    • Feige, U.1
  • 9
    • 84990704681 scopus 로고
    • A Tight Lower Bound on the Cover Time for Random Walks on Graphs
    • U. Feige, A Tight Lower Bound on the Cover Time for Random Walks on Graphs, Random Struct. Alg. 6 (1995), 433-438.
    • (1995) Random Struct. Alg. , vol.6 , pp. 433-438
    • Feige, U.1
  • 10
    • 0009305212 scopus 로고
    • Hyperbolic and Parabolic Packings
    • AND
    • Z. He AND O. Schramm, Hyperbolic and Parabolic Packings, Discrete Comput. Geom. 14 (1995), 123-149.
    • (1995) Discrete Comput. Geom. , vol.14 , pp. 123-149
    • He, Z.1    Schramm, O.2
  • 13
    • 0040821327 scopus 로고
    • On the angular resolution of planar graphs
    • S. Malitz AND A. Papakostas, On the angular resolution of planar graphs, SIAM J. Discrete Math., 7 (1994), 172-183.
    • (1994) SIAM J. Discrete Math. , vol.7 , pp. 172-183
    • Malitz, S.1    Papakostas, A.2
  • 14
    • 0039470734 scopus 로고
    • Covering Problems for Brownian Motion on Spheres
    • P. Matthews, Covering Problems for Brownian Motion on Spheres, Ann. Probab. 16 (1988), 189-199.
    • (1988) Ann. Probab. , vol.16 , pp. 189-199
    • Matthews, P.1
  • 16
    • 84972500328 scopus 로고
    • The convergence of circle packings to the Riemann mapping
    • B. Rodin and D. Sullivan, The convergence of circle packings to the Riemann mapping, J. Differential Geom. 26 (1987), 349-360.
    • (1987) J. Differential Geom. , vol.26 , pp. 349-360
    • Rodin, B.1    Sullivan, D.2
  • 18
    • 0001418604 scopus 로고
    • Random walks and the effective resistance of networks
    • P. Tetali, Random walks and the effective resistance of networks, J. Theoret. Probab. 4 (1991) 101-109.
    • (1991) J. Theoret. Probab. , vol.4 , pp. 101-109
    • Tetali, P.1
  • 19
    • 0040062542 scopus 로고
    • Covering Times of Random Walks on Bounded-Degree Trees and Other Graphs
    • D. Zuckerman, Covering Times of Random Walks on Bounded-Degree Trees and Other Graphs, J. Theor. Probab. 2 (1989), 147-158.
    • (1989) J. Theor. Probab. , vol.2 , pp. 147-158
    • Zuckerman, D.1
  • 20
    • 0039470744 scopus 로고
    • A technique for lower bounding the cover time
    • D. Zuckerman, A technique for lower bounding the cover time, SIAM J. Disc. Math. 5 (1992), 81-87.
    • (1992) SIAM J. Disc. Math. , vol.5 , pp. 81-87
    • Zuckerman, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.