-
1
-
-
85010171411
-
Dislocations in wave trains
-
J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London A 336, 165–190 (1974);
-
(1974)
Proc. R. Soc. London
, vol.A336
, pp. 165-190
-
-
Nye, J.F.1
Berry, M.V.2
-
2
-
-
0001389019
-
Singularities in waves and rays
-
R. Balian, M. Kleman, and J.-P. Poirier, eds. (North-Holland, Amsterdam
-
M. Berry, “Singularities in waves and rays,” in Physics of Defects, R. Balian, M. Kleman, and J.-P. Poirier, eds. (North-Holland, Amsterdam, 1981), pp. 453–549.
-
(1981)
Physics of Defects
, pp. 453-549
-
-
Berry, M.1
-
3
-
-
0003597268
-
-
MIT Press, Cambridge, Mass., Continuity is discussed in Secs. 12.2-12.9, pp. 81–92. The topological index is discussed in Sec. 36
-
V. I. Arnold, Ordinary Differential Equations (MIT Press, Cambridge, Mass., 1973). Continuity is discussed in Secs. 12.2-12.9, pp. 81–92. The topological index is discussed in Sec. 36, pp. 254–268.
-
(1973)
Ordinary Differential Equations
, pp. 254-268
-
-
Arnold, V.I.1
-
4
-
-
0001029591
-
Vortices in random wave fields: Nearest neighbor anticorrelations
-
N. Shvartsman and I. Freund, “Vortices in random wave fields: nearest neighbor anticorrelations,” Phys. Rev. Lett. 72, 1008–1011 (1994);
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 1008-1011
-
-
Shvartsman, N.1
Freund, I.2
-
5
-
-
0000915028
-
Wave-field phase singularities: The sign principle
-
I. Freund and N. Shvartsman, “Wave-field phase singularities: the sign principle,” Phys. Rev. A 50, 5164–5172 (1994);
-
(1994)
Phys. Rev.
, vol.A50
, pp. 5164-5172
-
-
Freund, I.1
Shvartsman, N.2
-
6
-
-
0028529417
-
Wave-field phase singularities: Near-neighbor correlations and anticorrelations
-
N. Shvartsman and I. Freund, “Wave-field phase singularities: near-neighbor correlations and anticorrelations,” J. Opt. Soc. Am. A 11, 2710–2718 (1994);
-
(1994)
J. Opt. Soc. Am.
, vol.A11
, pp. 2710-2718
-
-
Shvartsman, N.1
Freund, I.2
-
7
-
-
0001128329
-
Amplitude topological singularities in random electromagnetic wavefields
-
I. Freund, “Amplitude topological singularities in random electromagnetic wavefields,” Phys. Lett. A 198, 139–144 (1995).
-
(1995)
Phys. Lett.
, vol.A198
, pp. 139-144
-
-
Freund, I.1
-
8
-
-
0000442768
-
Saddles, singularities, and extrema in random phase fields
-
I. Freund, “Saddles, singularities, and extrema in random phase fields,” Phys. Rev. E 52, 2348–2360 (1995).
-
(1995)
Phys. Rev.
, vol.E52
, pp. 2348-2360
-
-
Freund, I.1
-
9
-
-
0001907780
-
Mathematical analysis of random noise
-
N. Wax, ed. (Dover, New York
-
S. O. Rice, “Mathematical analysis of random noise,” in Selected Papers on Noise and Stochastic Processes, N. Wax, ed. (Dover, New York, 1954), pp. 133–294.
-
(1954)
Selected Papers on Noise and Stochastic Processes
, pp. 133-294
-
-
Rice, S.O.1
-
10
-
-
0001323815
-
On the statistical distribution of the heights of sea waves
-
M. S. Longuet-Higgins, “On the statistical distribution of the heights of sea waves,” J. Mar. Res. 11, 245–266 (1952);
-
(1952)
J. Mar. Res.
, vol.11
, pp. 245-266
-
-
Longuet-Higgins, M.S.1
-
11
-
-
0000109756
-
The statistical analysis of a random moving surface
-
M. S. Longuet-Higgins, “The statistical analysis of a random moving surface,” Philos. Trans. R. Soc. London, Ser. A 249, 321–387 (1957);
-
(1957)
Philos. Trans. R. Soc. London, Ser.
, vol.A249
, pp. 321-387
-
-
Longuet-Higgins, M.S.1
-
12
-
-
0000978121
-
Re-flection and refraction at a random moving surface. I. Pattern and paths of specular points
-
M. S. Longuet-Higgins, “Re-flection and refraction at a random moving surface. I. Pattern and paths of specular points,” J. Opt. Soc. Am. 50, 838–844 (1960);
-
(1960)
J. Opt. Soc. Am.
, vol.50
, pp. 838-844
-
-
Longuet-Higgins, M.S.1
-
13
-
-
0000978121
-
II. Number of specular points in a Gaussian surface
-
M. S. Longuet-Higgins, “II. Number of specular points in a Gaussian surface,” J. Opt. Soc. Am. 50, 845–850 (1960);
-
(1960)
J. Opt. Soc. Am.
, vol.50
, pp. 845-850
-
-
Longuet-Higgins, M.S.1
-
14
-
-
0000978121
-
III. Frequency of twinkling in a Gaussian surface
-
M. S. Longuet-Higgins, “III. Frequency of twinkling in a Gaussian surface,” J. Opt. Soc. Am. 50, 851–856 (1960);
-
(1960)
J. Opt. Soc. Am.
, vol.50
, pp. 851-856
-
-
Longuet-Higgins, M.S.1
-
17
-
-
0028382986
-
Zero-crossing rate of differentiated speckle in-tensity
-
R. Barakat, “Zero-crossing rate of differentiated speckle in-tensity,” J. Opt. Soc. Am. A 11, 671–673 (1994);
-
(1994)
J. Opt. Soc. Am.
, vol.A11
, pp. 671-673
-
-
Barakat, R.1
-
18
-
-
0010226115
-
Levelcrossing statistics of aperture integrated isotropic speckle
-
‘R. Barakat, ‘Levelcrossing statistics of aperture integrated isotropic speckle,” J. Opt. Soc. Am. A 5, 1244–1247 (1988);
-
(1988)
J. Opt. Soc. Am.
, vol.A5
, pp. 1244-1247
-
-
Barakat, R.1
-
19
-
-
0018986075
-
The level-crossing rate and above level duration time of the intensity of a Gaussian random process
-
New York
-
R. Barakat, “The level-crossing rate and above level duration time of the intensity of a Gaussian random process,” Inf. Sci. (New York) 20, 83–87 (1980).
-
(1980)
Inf. Sci.
, vol.20
, pp. 83-87
-
-
Barakat, R.1
-
20
-
-
0012976231
-
Statistical properties of spatial derivatives of the amplitude and intensity of monochromatic speckle patterns
-
K. Ebeling, “Statistical properties of spatial derivatives of the amplitude and intensity of monochromatic speckle patterns,” Opt. Acta 26, 1505–1527 (1979);
-
(1979)
Opt. Acta
, vol.26
, pp. 1505-1527
-
-
Ebeling, K.1
-
21
-
-
0012927998
-
Experimental investigation of some statistical properties of monochromatic speckle patterns
-
K. Ebeling, “Experimental investigation of some statistical properties of monochromatic speckle patterns,” Opt. Acta 26, 1345–1349 (1979);
-
(1979)
Opt. Acta
, vol.26
, pp. 1345-1349
-
-
Ebeling, K.1
-
22
-
-
0019268289
-
K-distributed spatial intensity derivatives in monochromatic speckle patterns
-
K. Ebeling, “K-distributed spatial intensity derivatives in monochromatic speckle patterns,” Opt. Commun. 35, 323–326 (1980).
-
(1980)
Opt. Commun.
, vol.35
, pp. 323-326
-
-
Ebeling, K.1
-
23
-
-
0019003225
-
Real-time velocity measurement for a diffuse object using zero crossing of laser speckle
-
N. Takai, T. Iwai, and T. Asakura, “Real-time velocity measurement for a diffuse object using zero crossing of laser speckle,” J. Opt. Soc. Am. 70, 450–455 (1980);
-
(1980)
J. Opt. Soc. Am.
, vol.70
, pp. 450-455
-
-
Takai, N.1
Iwai, T.2
Asakura, T.3
-
24
-
-
0019543594
-
Laser speckle velocimeters using a zero-crossing technique for spatially integrated intensity fluctuation
-
N. Takai, T. Iwai, and T. Asakura, “Laser speckle velocimeters using a zero-crossing technique for spatially integrated intensity fluctuation,” Opt. Eng. 20, 324 (1981);
-
(1981)
Opt. Eng.
, vol.20
, pp. 324
-
-
Takai, N.1
Iwai, T.2
Asakura, T.3
-
25
-
-
0020843745
-
Displacement measurement of speckles using a 2-D level crossing technique
-
N. Takai and T. Asakura, “Displacement measurement of speckles using a 2-D level crossing technique,” Appl. Opt. 22, 3514–3519 (1983);
-
(1983)
Appl. Opt.
, vol.22
, pp. 3514-3519
-
-
Takai, N.1
Asakura, T.2
-
26
-
-
0018992051
-
Zero crossing study on dynamic properties of speckles
-
N. Takai, T. Iwai, T. Ushizaka, and T. Asakura, “Zero crossing study on dynamic properties of speckles,” J. Opt. (Paris) 11, 93–101 (1980).
-
(1980)
J. Opt. (Paris)
, vol.11
, pp. 93-101
-
-
Takai, N.1
Iwai, T.2
Ushizaka, T.3
Asakura, T.4
-
27
-
-
3843124036
-
Expected number of intensity level crossings in a normal speckle pattern
-
R. D. Bahuguna, K. K. Gupta, and K. Singh, “Expected number of intensity level crossings in a normal speckle pattern,” J. Opt. Soc. Am. 70, 874–876 (1988).
-
(1988)
J. Opt. Soc. Am.
, vol.70
, pp. 874-876
-
-
Bahuguna, R.D.1
Gupta, K.K.2
Singh, K.3
-
28
-
-
0029753441
-
Rice probability functions for level-crossing intervals of speckle intensity fields
-
N. Youssef, T. Munakata, and M. Takeda, “Rice probability functions for level-crossing intervals of speckle intensity fields,” Opt. Commun. 123, 55–62 (1996).
-
(1996)
Opt. Commun.
, vol.123
, pp. 55-62
-
-
Youssef, N.1
Munakata, T.2
Takeda, M.3
-
29
-
-
0028441926
-
Optical vortices in Gaussian random wave fields: Statistical probability densities
-
I. Freund, “Optical vortices in Gaussian random wave fields: statistical probability densities,” J. Opt. Soc. Am. A 11, 1644–1652 (1994);
-
(1994)
J. Opt. Soc. Am.
, vol.A11
, pp. 1644-1652
-
-
Freund, I.1
-
30
-
-
0030108077
-
Phase autocorrelation of random wave fields
-
I. Freund and D. A. Kessler, “Phase autocorrelation of random wave fields,” Opt. Commun. 124, 332 (1996);
-
(1996)
Opt. Commun.
, vol.124
, pp. 332
-
-
Freund, I.1
Kessler, D.A.2
-
31
-
-
0042182402
-
Structural correlations in Gaussian random wave fields
-
I. Freund and N. Shvartsman, “Structural correlations in Gaussian random wave fields,” Phys. Rev. E 51, 3770–3773 (1995).
-
(1995)
Phys. Rev.
, vol.E51
, pp. 3770-3773
-
-
Freund, I.1
Shvartsman, N.2
-
32
-
-
0004224256
-
-
Wiley, New York, The Van Cittert-Zernike theorem is discussed in Sec. 5.6, pp. 207–222. The random phasor model of Gaussian fields is discussed in Sec. 2.9
-
J. W. Goodman, Statistical Optics (Wiley, New York, 1985). The Van Cittert-Zernike theorem is discussed in Sec. 5.6, pp. 207–222. The random phasor model of Gaussian fields is discussed in Sec. 2.9, pp. 44–56.
-
(1985)
Statistical Optics
, pp. 44-56
-
-
Goodman, J.W.1
-
33
-
-
0000971051
-
Speckle spots ride phase saddles sidesaddle
-
N. Shvartsman and I. Freund, “Speckle spots ride phase saddles sidesaddle,” Opt. Commun. 17, 228–234 (1995).
-
(1995)
Opt. Commun.
, vol.17
, pp. 228-234
-
-
Shvartsman, N.1
Freund, I.2
-
34
-
-
85010141197
-
-
Heath, Boston, Mass., Chap. 7
-
A. L. Nelson, K. W. Foley, and W. B. Borgman, Calculus (Heath, Boston, Mass., 1946), Chap. 7, pp. 107–117.
-
(1946)
Calculus
, pp. 107-117
-
-
Nelson, A.L.1
Foley, K.W.2
Borgman, W.B.3
-
35
-
-
0030194907
-
Intensity critical point correlation functions in random wave fields
-
I. Freund, “Intensity critical point correlation functions in random wave fields,” Opt. Commun. 128, 315–324 (1996).
-
(1996)
Opt. Commun.
, vol.128
, pp. 315-324
-
-
Freund, I.1
-
36
-
-
84894398350
-
-
McGraw-Hill, New York, Chap. 7
-
D. Middleton, Introduction to Statistical Communication Theory (McGraw-Hill, New York, 1960), Chap. 7, pp. 335–368.
-
(1960)
Theory
, pp. 335-368
-
-
Middleton, D.1
-
37
-
-
85010176206
-
-
McGraw-Hill, New York, Sec. 9.6
-
A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1965), Sec. 9.6, pp. 312–323.
-
(1965)
Probability, Random Variables, and Stochastic Processes
, pp. 312-323
-
-
Papoulis, A.1
-
39
-
-
0003084471
-
Disruption of wave-fronts
-
M. Berry,“Disruption of wave-fronts: statistics of dislocations in incoherent Gaussian random waves,” J. Phys. A 11, 27–37 (1978).
-
(1978)
J. Phys.
, vol.A11
, pp. 27-37
-
-
Berry, M.1
-
40
-
-
35949017378
-
Percolation threshold of a two-dimensional continuum system
-
A. Weinberg, “Percolation threshold of a two-dimensional continuum system,” Phys. Rev. B 26, 1352–1361 (1982).
-
(1982)
Phys. Rev.
, vol.B26
, pp. 1352-1361
-
-
Weinberg, A.1
-
41
-
-
35949022912
-
Distribution of maxima, minima, and saddle points of the intensity of laser speckle patterns
-
A. Weinberg and B. I. Halperin, “Distribution of maxima, minima, and saddle points of the intensity of laser speckle patterns,” Phys. Rev. B 26, 1362–1368 (1982).
-
(1982)
Phys. Rev.
, vol.B26
, pp. 1362-1368
-
-
Weinberg, A.1
Halperin, B.I.2
-
42
-
-
0039404185
-
Statistical mechanics of topological defects
-
R. Balian, M. Kleman, and J.-P. Poirier, eds. (North-Holland, Amsterdam
-
B. I. Halperin, “Statistical mechanics of topological defects,” in Physics of Defects, R. Balian, M. Kleman, and J.-P. Poirier, eds. (North-Holland, Amsterdam, 1981), pp. 814–857.
-
(1981)
Physics of Defects
, pp. 814-857
-
-
Halperin, B.I.1
|