-
2
-
-
4243279125
-
Generalized phase transitions in finite coupled map lattices
-
Blank M L 1997 Generalized phase transitions in finite coupled map lattices Physica D 103 34-50
-
(1997)
Physica D
, vol.103
, pp. 34-50
-
-
Blank, M.L.1
-
3
-
-
0030537298
-
High temperature expansions and dynamical systems
-
Bricmont J and Kupiainen A 1996 High temperature expansions and dynamical systems Commun. Math. Phys. 178 703-32
-
(1996)
Commun. Math. Phys.
, vol.178
, pp. 703-732
-
-
Bricmont, J.1
Kupiainen, A.2
-
4
-
-
0001671586
-
On the problem of stability in lattice dynamical systems
-
Bunimovish L A and Carlen E A 1995 On the problem of stability in lattice dynamical systems J. Diff. Eqns 123 213-19
-
(1995)
J. Diff. Eqns
, vol.123
, pp. 213-219
-
-
Bunimovish, L.A.1
Carlen, E.A.2
-
5
-
-
0001163022
-
Spacetime chaos in coupled map lattices
-
Bunimovich L A and Sinai Ya G 1988 Spacetime chaos in coupled map lattices Nonlinearity 1 491-516
-
(1988)
Nonlinearity
, vol.1
, pp. 491-516
-
-
Bunimovich, L.A.1
Sinai, Ya.G.2
-
6
-
-
34250084304
-
Regularity properties and pathologies of position-space renormalization group transformation: Scope and limitation of Gibbsian theory
-
van Enter A C D, Fernandez R and Sokal A D 1995 Regularity properties and pathologies of position-space renormalization group transformation: scope and limitation of Gibbsian theory J. Stat Phys. 72 679-1167
-
(1995)
J. Stat Phys.
, vol.72
, pp. 679-1167
-
-
Van Enter, A.C.D.1
Fernandez, R.2
Sokal, A.D.3
-
7
-
-
48749145669
-
The dimension of chaotic attractors
-
Farmer D J, Ott E and Yorks J A 1983 The dimension of chaotic attractors Physica D 7 153-80
-
(1983)
Physica D
, vol.7
, pp. 153-180
-
-
Farmer, D.J.1
Ott, E.2
Yorks, J.A.3
-
8
-
-
0034178876
-
Coupled map lattices with phase transitions
-
Gielis G and MacKay R S 2000 Coupled map lattices with phase transitions Nonlinearity 13 867-88
-
(2000)
Nonlinearity
, vol.13
, pp. 867-888
-
-
Gielis, G.1
Mackay, R.S.2
-
11
-
-
84974325915
-
Nonexistence of SBR measures for some diffeomorphisms which are 'almost Anosov'
-
Hu H and Young L-S 1995 Nonexistence of SBR measures for some diffeomorphisms which are 'almost Anosov' Erg. Th. Dyn. Sys. 15 67-76
-
(1995)
Erg. Th. Dyn. Sys.
, vol.15
, pp. 67-76
-
-
Hu, H.1
Young, L.-S.2
-
12
-
-
0034391588
-
Sojourn times in small neighborhoods of indifferent fixed points of one-dimensional dynamical systems
-
Inoue T 2000 Sojourn times in small neighborhoods of indifferent fixed points of one-dimensional dynamical systems Erg. Th. Dyn. Sys. 20 241-58
-
(2000)
Erg. Th. Dyn. Sys.
, vol.20
, pp. 241-258
-
-
Inoue, T.1
-
13
-
-
25044453345
-
Globally coupled chaos violates the law of large numbers
-
Kaneko K 1990 Globally coupled chaos violates the law of large numbers Phys. Rev. Lett. 65 1-4
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 1-4
-
-
Kaneko, K.1
-
15
-
-
21044442631
-
Statistical mechanics of probabilistics cellular automata
-
Lebowitz J L, Maes C and Speer E 1990 Statistical mechanics of probabilistics cellular automata J. Stat. Phys. 59 117-70
-
(1990)
J. Stat. Phys.
, vol.59
, pp. 117-170
-
-
Lebowitz, J.L.1
Maes, C.2
Speer, E.3
-
16
-
-
0242343443
-
Convergence of images of certain measures
-
Statistical Physics and Dynamical Systems (Koszeg, 1984) ed J Fritz, A Jaffe and D Szacz (Boston, MA: Birkhauser)
-
Misiurewicz M and Zdunik A 1985 Convergence of images of certain measures Statistical Physics and Dynamical Systems (Koszeg, 1984) ed J Fritz, A Jaffe and D Szacz Progr. Phys. vol 10 (Boston, MA: Birkhauser) pp 203-19
-
(1985)
Progr. Phys.
, vol.10
, pp. 203-219
-
-
Misiurewicz, M.1
Zdunik, A.2
-
18
-
-
0001309969
-
Stable and attractive trajectories in multicomponent systems
-
ed R L Dobrushin and Ya G Sinai (New York: Dekker)
-
Toom A L 1980 Stable and attractive trajectories in multicomponent systems Multicomponent Random Systems ed R L Dobrushin and Ya G Sinai (New York: Dekker)
-
(1980)
Multicomponent Random Systems
-
-
Toom, A.L.1
-
20
-
-
0141450378
-
What are SBR measures, and which dynamical systems have them
-
Young L-S 2002 What are SBR measures, and which dynamical systems have them J. Stat. Phys. 108 733-54
-
(2002)
J. Stat. Phys.
, vol.108
, pp. 733-754
-
-
Young, L.-S.1
|