메뉴 건너뛰기




Volumn 38, Issue 1, 1999, Pages 5-11

Global stabilization of discrete-time homogeneous systems

Author keywords

Discrete time system; Feedback stabilization; Homogeneous system

Indexed keywords


EID: 0142225476     PISSN: 01676911     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-6911(99)00040-7     Document Type: Article
Times cited : (13)

References (21)
  • 1
    • 0026204666 scopus 로고
    • Adding an integrator for the stabilization problem
    • J.M. Coron, L. Praly, Adding an integrator for the stabilization problem, Systems Control Lett. 17 (1991) 89-104.
    • (1991) Systems Control Lett. , vol.17 , pp. 89-104
    • Coron, J.M.1    Praly, L.2
  • 2
    • 0024931884 scopus 로고
    • Some sufficient conditions for asymptotic stabilizability of three dimensional homogeneous polynomial systems
    • Tampa, Florida, December
    • W.P. Dayawansa, C.F. Martin, Some sufficient conditions for asymptotic stabilizability of three dimensional homogeneous polynomial systems, Proceedings of the 28th C.D.C., Tampa, Florida, December 1989.
    • (1989) Proceedings of the 28th C.D.C.
    • Dayawansa, W.P.1    Martin, C.F.2
  • 3
    • 38149144807 scopus 로고
    • Stabilization of homogeneous bilinear systems
    • H. Hammouri, J.C. Marques, Stabilization of homogeneous bilinear systems, Appl. Math. Lett. 7 (1994) 23-28.
    • (1994) Appl. Math. Lett. , vol.7 , pp. 23-28
    • Hammouri, H.1    Marques, J.C.2
  • 4
    • 0003050169 scopus 로고
    • Asymptotically stabilizing feedback controls
    • H. Hermes, Asymptotically stabilizing feedback controls, J. Differential Equations 92 (1991) 76-89.
    • (1991) J. Differential Equations , vol.92 , pp. 76-89
    • Hermes, H.1
  • 5
    • 0026080309 scopus 로고
    • Asymptotically stabilizing feedback controls and the nonlinear regulator problem
    • H. Hermes, Asymptotically stabilizing feedback controls and the nonlinear regulator problem, SIAM J. Control Optim. 29 (1991) 185-196.
    • (1991) SIAM J. Control Optim. , vol.29 , pp. 185-196
    • Hermes, H.1
  • 6
    • 0001110408 scopus 로고
    • Homogeneous coordinates and continuous asymptotically stabilizing feedback controls
    • S. Elaydi (Ed.)
    • H. Hermes, Homogeneous coordinates and continuous asymptotically stabilizing feedback controls, in: S. Elaydi (Ed.), Lecture Notes in Applied and Pure Mathematics, vol. 127, 1991, pp. 249-260.
    • (1991) Lecture Notes in Applied and Pure Mathematics , vol.127 , pp. 249-260
    • Hermes, H.1
  • 7
    • 0029639910 scopus 로고
    • Homogeneous feedback controls for homogeneous systems
    • H. Hermes, Homogeneous feedback controls for homogeneous systems, Systems Control Lett. 24 (1995) 7-11.
    • (1995) Systems Control Lett. , vol.24 , pp. 7-11
    • Hermes, H.1
  • 8
    • 0023455846 scopus 로고
    • Feedback linearization of discrete-time systems
    • B. Jakubczyk, Feedback linearization of discrete-time systems, Systems Control Lett. 9 (1987) 411-416.
    • (1987) Systems Control Lett. , vol.9 , pp. 411-416
    • Jakubczyk, B.1
  • 9
    • 0025249659 scopus 로고
    • Controllability of nonlinear discrete-time systems. A lie-algebraic approach
    • B. Jakubczyk, E.D. Sontag, Controllability of nonlinear discrete-time systems. A lie-algebraic approach, SIAM J. Control Optim. 28 (1990) 1-33.
    • (1990) SIAM J. Control Optim. , vol.28 , pp. 1-33
    • Jakubczyk, B.1    Sontag, E.D.2
  • 10
    • 0024177871 scopus 로고
    • Stabilizability and nilpotent approximations
    • Texas
    • M. Kawski, Stabilizability and nilpotent approximations, Proceedings of the 27th C.D.C., Texas, 1988, pp. 1244-1248.
    • (1988) Proceedings of the 27th C.D.C. , pp. 1244-1248
    • Kawski, M.1
  • 11
    • 0024908774 scopus 로고
    • Homogeneous feedback stabilization in dimension three
    • Tampa, FL
    • M. Kawski, Homogeneous feedback stabilization in dimension three, Proceedings of the 28th C.D.C., Tampa, FL, 1989, pp. 1370-1375.
    • (1989) Proceedings of the 28th C.D.C. , pp. 1370-1375
    • Kawski, M.1
  • 12
    • 0024607453 scopus 로고
    • Stabilization of nonlinear systems in the plane
    • M. Kawski, Stabilization of nonlinear systems in the plane, Systems Control Lett. 12 (1989) 169-175.
    • (1989) Systems Control Lett. , vol.12 , pp. 169-175
    • Kawski, M.1
  • 13
    • 0000575314 scopus 로고
    • Homogeneous stabilizing feedback laws
    • MITA Press, Tokyo
    • M. Kawski, Homogeneous stabilizing feedback laws, Control Theory and Advanced Technology, vol. 6, MITA Press, Tokyo, 1990, pp. 497-516.
    • (1990) Control Theory and Advanced Technology , vol.6 , pp. 497-516
    • Kawski, M.1
  • 14
    • 0344952645 scopus 로고
    • Families of dilations and asymptotic stability
    • Birkhauser, Basel
    • M. Kawski, Families of dilations and asymptotic stability, Analysis of Controlled Dynamical Systems, Birkhauser, Basel, 1991.
    • (1991) Analysis of Controlled Dynamical Systems
    • Kawski, M.1
  • 17
    • 0023119592 scopus 로고
    • On input-output linearization of discrete-time nonlinear systems
    • H.G. Lee, S.I. Marcus, On input-output linearization of discrete-time nonlinear systems, Systems Control Lett. 8 (1987) 249-259.
    • (1987) Systems Control Lett. , vol.8 , pp. 249-259
    • Lee, H.G.1    Marcus, S.I.2
  • 18
    • 0026998882 scopus 로고
    • Homogeneous Lyapunov function for homogeneous continuous vector field
    • L. Rosier, Homogeneous Lyapunov function for homogeneous continuous vector field, Systems Control Lett. 19 (1992) 467-473.
    • (1992) Systems Control Lett. , vol.19 , pp. 467-473
    • Rosier, L.1
  • 20
    • 0029747566 scopus 로고    scopus 로고
    • Homogeneous lyapunov function and necessary conditions for stabilization
    • R. Sepulchre, D. Aeyels, Homogeneous lyapunov function and necessary conditions for stabilization, Math. Control, Signal Systems 9 (1996) 34-58.
    • (1996) Math. Control, Signal Systems , vol.9 , pp. 34-58
    • Sepulchre, R.1    Aeyels, D.2
  • 21
    • 0030243809 scopus 로고    scopus 로고
    • Stabilizability does not imply homogeneous stabilizability for controllable homogeneous systems
    • R. Sepulchre, D. Aeyels, Stabilizability does not imply homogeneous stabilizability for controllable homogeneous systems, SIAM J. Control Optim. 34(5) (1996) 1798-1813.
    • (1996) SIAM J. Control Optim. , vol.34 , Issue.5 , pp. 1798-1813
    • Sepulchre, R.1    Aeyels, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.