메뉴 건너뛰기




Volumn 34, Issue 1, 2003, Pages 1-9

Strict positive realness for linear time-delay systems

Author keywords

[No Author keywords available]

Indexed keywords

ASYMPTOTIC STABILITY; CLOSED LOOP CONTROL SYSTEMS; OPTIMIZATION;

EID: 0142196587     PISSN: 00207721     EISSN: None     Source Type: Journal    
DOI: 10.1080/0020772031000115489     Document Type: Article
Times cited : (6)

References (24)
  • 5
    • 0026221926 scopus 로고
    • Robust stabilization with positive real uncertainty: Beyond the small gain theorem
    • HADDAD, W., and BERNSTEIN, D., 1991, Robust stabilization with positive real uncertainty: beyond the small gain theorem. Systems Control Letters, 17, 191-208.
    • (1991) Systems Control Letters , vol.17 , pp. 191-208
    • Haddad, W.1    Bernstein, D.2
  • 8
    • 0023132589 scopus 로고
    • Frequency domain conditions for strictly positive real functions
    • IOANNOU, P. A., and TAO, G., 1987, Frequency domain conditions for strictly positive real functions. IEEE Transactions on Automatic control, 32, 53-54.
    • (1987) IEEE Transactions on Automatic Control , vol.32 , pp. 53-54
    • Ioannou, P.A.1    Tao, G.2
  • 10
    • 0032123808 scopus 로고    scopus 로고
    • ∞-output feedback controller design for linear systems with time-varying delayed state
    • ∞-output feedback controller design for linear systems with time-varying delayed state. IEEE Transactions on Automatic Control, 43, 971-974.
    • (1998) IEEE Transactions on Automatic Control , vol.43 , pp. 971-974
    • Jeung, E.T.1    Kim, J.H.2    Park, H.B.3
  • 11
    • 0029734113 scopus 로고    scopus 로고
    • On a class of Marginally stable positive-real systems
    • JOSHI, S. M., and GUPTA, S., 1996, On a class of Marginally stable positive-real systems. IEEE Transactions on Automatic Control, 41, 152-155.
    • (1996) IEEE Transactions on Automatic Control , vol.41 , pp. 152-155
    • Joshi, S.M.1    Gupta, S.2
  • 12
    • 0020113073 scopus 로고
    • Linear systems with commensurate time delays: Stability and stabilization independent of delay
    • KAMEN, E. W., 1982, Linear systems with commensurate time delays: stability and stabilization independent of delay. IEEE Transactions on Automatic Control, 27, 367-375.
    • (1982) IEEE Transactions on Automatic Control , vol.27 , pp. 367-375
    • Kamen, E.W.1
  • 13
    • 0025522522 scopus 로고
    • Strictly positive real transfer functions revisited
    • LEAL, R. L., and JOSHI, S. M., 1990, Strictly positive real transfer functions revisited. IEEE Transactions on Automatic control, 35, 1243-1245.
    • (1990) IEEE Transactions on Automatic Control , vol.35 , pp. 1243-1245
    • Leal, R.L.1    Joshi, S.M.2
  • 15
    • 0031062111 scopus 로고    scopus 로고
    • Independent of delay stability criteria for uncertain linear state space models
    • LUO, J. S., and VAN DEN SOSCH, P. P. J., 1997, Independent of delay stability criteria for uncertain linear state space models. Automatica, 33, 171-179.
    • (1997) Automatica , vol.33 , pp. 171-179
    • Luo, J.S.1    Van Den Sosch, P.P.J.2
  • 20
    • 0028526539 scopus 로고
    • Solution to the positive real control problem for linear time-invariant systems
    • SUN, W., KHARGONEKAR, P. P., and SHIM, D., 1994, Solution to the positive real control problem for linear time-invariant systems. IEEE Transactions on Automatic control, 39, 2034-2046.
    • (1994) IEEE Transactions on Automatic Control , vol.39 , pp. 2034-2046
    • Sun, W.1    Khargonekar, P.P.2    Shim, D.3
  • 21
    • 0024125269 scopus 로고
    • Strictly positive real matrices and the Lefscheltz-Kalman-Yakubovich lemma
    • TAO, G., and IOANNOU, P. A., 1988, Strictly positive real matrices and the Lefscheltz-Kalman-Yakubovich lemma. IEEE Transactions on Automatic control, 33, 1183-1185.
    • (1988) IEEE Transactions on Automatic Control , vol.33 , pp. 1183-1185
    • Tao, G.1    Ioannou, P.A.2
  • 22
    • 0016034653 scopus 로고
    • Strictly positive real functions and Lefschetz-Kalman-Yacubovich (LKY) lemma
    • TAYLOR, J. H., 1974, Strictly positive real functions and Lefschetz-Kalman-Yacubovich (LKY) lemma. IEEE Transactions on Circuits and Systems, 21, 310-311.
    • (1974) IEEE Transactions on Circuits and Systems , vol.21 , pp. 310-311
    • Taylor, J.H.1
  • 23
    • 0031198472 scopus 로고    scopus 로고
    • Synthesis of positive real feedback systems; a simple derivation via Parrott's theorem
    • TURAN, L., SAFONOV, M. G., and HUANG, C. H., 1997, Synthesis of positive real feedback systems; a simple derivation via Parrott's theorem. IEEE Transactions on Automatic control, 42, 1154-1157.
    • (1997) IEEE Transactions on Automatic Control , vol.42 , pp. 1154-1157
    • Turan, L.1    Safonov, M.G.2    Huang, C.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.