-
2
-
-
33748504008
-
Newton's method for generalized equations
-
Springfield, VA 22161, USA. Accession number AD A077 096
-
N. H. Josephy, "Newton's method for generalized equations", National Technical Information Service , (Springfield, VA 22161, USA. Accession number AD A077 096).
-
National Technical Information Service
-
-
Josephy, N.H.1
-
3
-
-
33748477368
-
Quasi-newton methods for generalized equations
-
Springfield, VA 22161, USA. Accession number AD A077 096
-
N. H. Josephy, "Quasi-newton methods for generalized equations", National Technical Information Service , (Springfield, VA 22161, USA. Accession number AD A077 096).
-
National Technical Information Service
-
-
Josephy, N.H.1
-
4
-
-
0003162836
-
Recent developments in algorithms and software for trust region methods
-
(eds. A. Bachem, M. Grötschel and B. Korte), Springer-Verlag, Berlin
-
J. J. Moré, "Recent developments in algorithms and software for trust region methods", in Mathematical Programming, The State of Art, Bonn 1982 (eds. A. Bachem, M. Grötschel and B. Korte), (Springer-Verlag, Berlin, 1983) 258-287.
-
(1983)
Mathematical Programming, the State of Art, Bonn 1982
, pp. 258-287
-
-
Moré, J.J.1
-
5
-
-
0003412346
-
A projected Langrangian algorithm for nonlinear minimax optimization
-
W. Murray and M. L. Overton, "A projected Langrangian algorithm for nonlinear minimax optimization", SIAM J. Sci. Stat. Comp. 1 (1980) 345-370.
-
(1980)
SIAM J. Sci. Stat. Comp.
, vol.1
, pp. 345-370
-
-
Murray, W.1
Overton, M.L.2
-
6
-
-
33748500673
-
The method of feasible directions for continuous minimax problems
-
(ed. A. Prekopa), North-Holland, Amsterdam
-
W. Oettli, "The method of feasible directions for continuous minimax problems", in Survey in Mathematical Programming (ed. A. Prekopa), Volume 1, (North-Holland, Amsterdam, 1979) 505-512.
-
(1979)
Survey in Mathematical Programming
, vol.1
, pp. 505-512
-
-
Oettli, W.1
-
8
-
-
0001601094
-
Newton's method for B-differentiable equations
-
J. S. Pang, "Newton's method for B-differentiable equations", Mathematics of Operations Research 15 (1990) 311-341.
-
(1990)
Mathematics of Operations Research
, vol.15
, pp. 311-341
-
-
Pang, J.S.1
-
9
-
-
0023314734
-
On the mathematical foundations of nondifferentiable optimization
-
E. Polak, "On the mathematical foundations of nondifferentiable optimization", SIAM Review 29 (1987) 21-87.
-
(1987)
SIAM Review
, vol.29
, pp. 21-87
-
-
Polak, E.1
-
11
-
-
0002302301
-
Convergence properties of a class of minimization algorithm
-
(eds. O. L. Mangasarian, R. R. Meyer and S. M. Robonson), Academic Press, New York
-
M. J. D. Powell, "Convergence properties of a class of minimization algorithm", in Nonlinear Programming 2 (eds. O. L. Mangasarian, R. R. Meyer and S. M. Robonson), (Academic Press, New York, 1975).
-
(1975)
Nonlinear Programming
, vol.2
-
-
Powell, M.J.D.1
-
12
-
-
0002741508
-
Variable metric methods for constrained optimization
-
(eds. A. Bachem, M. Grötschel and B. Korte), Springer-Verlag, Berlin
-
M. J. D. Powell, "Variable metric methods for constrained optimization", in Mathematical Programming, The State of Art, Bonn 1982 (eds. A. Bachem, M. Grötschel and B. Korte), (Springer-Verlag, Berlin, 1983) 288-311.
-
(1983)
Mathematical Programming, the State of Art, Bonn 1982
, pp. 288-311
-
-
Powell, M.J.D.1
-
13
-
-
0010181201
-
An iterative method for the minimax problem
-
(eds. D. Z. Du and P. M. Pardalos), Kulwer Academic Publisher, Boston
-
L. Qi and W. Sun, "An iterative method for the minimax problem", in Minimax and Applications (eds. D. Z. Du and P. M. Pardalos), (Kulwer Academic Publisher, Boston, 1995) 55-67.
-
(1995)
Minimax and Applications
, pp. 55-67
-
-
Qi, L.1
Sun, W.2
-
14
-
-
0001393203
-
Global convergence of damped Newton's method for nonsmooth equations, via the path search
-
D. Ralph, "Global convergence of damped Newton's method for nonsmooth equations, via the path search", Mathematics of Operations Research 19 (1994) 352-389.
-
(1994)
Mathematics of Operations Research
, vol.19
, pp. 352-389
-
-
Ralph, D.1
-
15
-
-
0000056025
-
Generalized equation and their solutions, Part I: Basic theory
-
S. M. Robinson, "Generalized equation and their solutions, Part I: Basic theory", Mathematical Programming Study 10 (1979) 128-141.
-
(1979)
Mathematical Programming Study
, vol.10
, pp. 128-141
-
-
Robinson, S.M.1
-
17
-
-
0001272077
-
Normal maps induced by linear transformations
-
S. M. Robinson, "Normal maps induced by linear transformations", Mathematics of Operations Research 17 (1992) 691-714.
-
(1992)
Mathematics of Operations Research
, vol.17
, pp. 691-714
-
-
Robinson, S.M.1
-
19
-
-
34249960545
-
Computational schemes for large-scale problems in extended linear-quadratic programming
-
R. T. Rockafellar, "Computational schemes for large-scale problems in extended linear-quadratic programming", Mathematical Programming 48 (1990) 447-474.
-
(1990)
Mathematical Programming
, vol.48
, pp. 447-474
-
-
Rockafellar, R.T.1
-
20
-
-
0020929964
-
A dual solution procedure for quadratic stochastic programs with simple recourse
-
(ed. A. Reinoza), Springer-Verlag, Berlin
-
R. T. Rockafellar and R. J.-B. Wets, "A dual solution procedure for quadratic stochastic programs with simple recourse", in Numerical Methods, Lecture Notes in Mathematics 1005 (ed. A. Reinoza), (Springer-Verlag, Berlin, 1983) 252-265.
-
(1983)
Numerical Methods, Lecture Notes in Mathematics 1005
, pp. 252-265
-
-
Rockafellar, R.T.1
Wets, R.J.-B.2
-
21
-
-
33748507885
-
Newton's method and quasi-Newton-SQP method for general constrained optimization
-
W. Sun, "Newton's method and quasi-Newton-SQP method for general constrained optimization", to appear in Applied Mathematics and Computation (1997).
-
(1997)
Applied Mathematics and Computation
-
-
Sun, W.1
-
24
-
-
0000712015
-
Primal-dual projected gradient algorithms for extended linear quadratic programming
-
C. Zhu and R. T. Rockafellar, "Primal-dual projected gradient algorithms for extended linear quadratic programming", SIAM J. Optimization 3 (1993) 751-783.
-
(1993)
SIAM J. Optimization
, vol.3
, pp. 751-783
-
-
Zhu, C.1
Rockafellar, R.T.2
|