메뉴 건너뛰기




Volumn 19, Issue 4, 2003, Pages 623-634

Predicting the geo-temporal variations of crime and disorder

Author keywords

Artificial neural networks; Autoregressive model; Cluster analysis; Crime forecasting; Gamma test; Geographic information system

Indexed keywords


EID: 0142118660     PISSN: 01692070     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0169-2070(03)00095-5     Document Type: Article
Times cited : (68)

References (18)
  • 1
    • 0034288854 scopus 로고    scopus 로고
    • Automatic neural network modelling for univariate time series
    • Balkin S.D. Ord J.K. Automatic neural network modelling for univariate time series International Journal of Forecasting 16 2000 509-515
    • (2000) International Journal of Forecasting , vol.16 , pp. 509-515
    • Balkin, S.D.1    Ord, J.K.2
  • 3
    • 0142077827 scopus 로고    scopus 로고
    • When is a hotspot a hotspot? A procedure for creating statistically robust hotspot maps of crime
    • D. B. Kidner (Ed.), London: Taylor and Francis
    • Chainey S. Reid S. When is a hotspot a hotspot? A procedure for creating statistically robust hotspot maps of crime In: Kidner D.B. et al. (Ed.), Socio-economic applications in geographical information science 2002 21-36 Taylor and Francis London
    • (2002) Socio-Economic Applications in Geographical Information Science , pp. 21-36
    • Chainey, S.1    Reid, S.2
  • 5
    • 0011274511 scopus 로고    scopus 로고
    • winGamma™: A non-linear data analysis and modelling tool with applications to flood prediction
    • Ph.D. thesis, Department of Computer Science, University of Wales, Cardiff, Wales UK
    • Durrant P.J. 2001 winGamma™: A non-linear data analysis and modelling tool with applications to flood prediction. Ph.D. thesis, Department of Computer Science, University of Wales, Cardiff, Wales UK.
    • (2001)
    • Durrant, P.J.1
  • 8
    • 0025751820 scopus 로고
    • Approximation capabilities of multi-layer feed-forward networks
    • Hornik K. Approximation capabilities of multi-layer feed-forward networks Neural Networks 4 1991 251-257
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 10
    • 0142077826 scopus 로고
    • An automated geographical analysis system
    • Openshaw S. An automated geographical analysis system Environment and Planning. A 19 1987 431-436
    • (1987) Environment and Planning. A , vol.19 , pp. 431-436
    • Openshaw, S.1
  • 11
    • 0142109418 scopus 로고
    • Leukaemia patterns in Northern England: A new method of finding cancer clusters
    • Openshaw S. Leukaemia patterns in Northern England: A new method of finding cancer clusters Northern Economic Review 16 1988 52-69
    • (1988) Northern Economic Review , vol.16 , pp. 52-69
    • Openshaw, S.1
  • 15
    • 0002576088 scopus 로고    scopus 로고
    • Neural network forecasting of Canadian GDP growth
    • Tkacz G. Neural network forecasting of Canadian GDP growth International Journal of Forecasting 17 2001 57-69
    • (2001) International Journal of Forecasting , vol.17 , pp. 57-69
    • Tkacz, G.1
  • 17
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • Zhang G.B. Patuwo E. Hu M.Y. Forecasting with artificial neural networks: The state of the art International Journal of Forecasting 141 1998 35-62
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.B.1    Patuwo, E.2    Hu, M.Y.3
  • 18
    • 84972817918 scopus 로고
    • Time series analysis and prediction by neural networks
    • Zhang X. Time series analysis and prediction by neural networks Optimization Methods and Software 4 1994 151-170
    • (1994) Optimization Methods and Software , vol.4 , pp. 151-170
    • Zhang, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.