메뉴 건너뛰기




Volumn 148, Issue 2, 2004, Pages 537-560

Periodic solution of a Lotka-Volterra predator-prey model with dispersion and time delays

Author keywords

Dispersion; Global stability; Periodic solution; Persistence; Time delay

Indexed keywords

COMPUTER SIMULATION; LYAPUNOV METHODS; POPULATION STATISTICS; THEOREM PROVING;

EID: 0142094503     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0096-3003(02)00918-9     Document Type: Article
Times cited : (32)

References (39)
  • 1
    • 0002339937 scopus 로고
    • Persistence and extinction in Lotka-Volterra reaction diffusion equations
    • Allen L.J.S. Persistence and extinction in Lotka-Volterra reaction diffusion equations. Math. Biosci. 65:1983;1-12.
    • (1983) Math. Biosci. , vol.65 , pp. 1-12
    • Allen, L.J.S.1
  • 2
    • 0023135850 scopus 로고
    • Persistence, extinction, and critical patch number for island populations
    • Allen L.J.S. Persistence, extinction, and critical patch number for island populations. J. Math. Biol. 24:1987;617-625.
    • (1987) J. Math. Biol. , vol.24 , pp. 617-625
    • Allen, L.J.S.1
  • 3
    • 0023083590 scopus 로고
    • Global stability of single-species diffusion Volterra models with continuous time delays
    • Beretta E., Takeuchi Y. Global stability of single-species diffusion Volterra models with continuous time delays. Bull. Math. Biol. 49:1987;431-448.
    • (1987) Bull. Math. Biol. , vol.49 , pp. 431-448
    • Beretta, E.1    Takeuchi, Y.2
  • 4
    • 0000839494 scopus 로고
    • Global asymptotic stability of Lotka-Volterra Diffusion models with continuous time delays
    • Beretta E., Takeuchi Y. Global asymptotic stability of Lotka-Volterra Diffusion models with continuous time delays. SIAM J. Appl. Math. 48:1988;627-651.
    • (1988) SIAM J. Appl. Math. , vol.48 , pp. 627-651
    • Beretta, E.1    Takeuchi, Y.2
  • 5
    • 38249035528 scopus 로고
    • Global stability and periodic orbits for two patch predator-prey diffusion-delay models
    • Beretta E., Solimano F., Takeuchi Y. Global stability and periodic orbits for two patch predator-prey diffusion-delay models. Math. Biosci. 85:1987;153-183.
    • (1987) Math. Biosci. , vol.85 , pp. 153-183
    • Beretta, E.1    Solimano, F.2    Takeuchi, Y.3
  • 6
    • 0000657160 scopus 로고
    • Single species migration in two habitats: Persistence and extinction
    • Freedman H.I. Single species migration in two habitats: persistence and extinction. Math. Model. 8:1987;778-780.
    • (1987) Math. Model. , vol.8 , pp. 778-780
    • Freedman, H.I.1
  • 7
    • 0000262789 scopus 로고
    • Global stability and predator dynamics in a model of prey dispersal in a patchy environment
    • Freedman H.I., Takeuchi Y. Global stability and predator dynamics in a model of prey dispersal in a patchy environment. Nonlinear Anal. TMA. 13:1989;993-1002.
    • (1989) Nonlinear Anal. TMA , vol.13 , pp. 993-1002
    • Freedman, H.I.1    Takeuchi, Y.2
  • 8
    • 84963388063 scopus 로고
    • Predator survival versus extinction as a function of dispersal in a predator-prey model with patchy environment
    • Freedman H.I., Takeuchi Y. Predator survival versus extinction as a function of dispersal in a predator-prey model with patchy environment. Appl. Anal. 31:1989;247-266.
    • (1989) Appl. Anal. , vol.31 , pp. 247-266
    • Freedman, H.I.1    Takeuchi, Y.2
  • 9
    • 0001363099 scopus 로고
    • Mathematical models of population interaction with dispersal: I. Stability of two habitats with and without a predator
    • Freedman H.I., Waltman P. Mathematical models of population interaction with dispersal: I. Stability of two habitats with and without a predator. SIAM Appl. Math. 32:1977;631-648.
    • (1977) SIAM Appl. Math. , vol.32 , pp. 631-648
    • Freedman, H.I.1    Waltman, P.2
  • 10
    • 38249043753 scopus 로고
    • Mathematical models of population interaction with dispersal: Differential survival in a change of habtat
    • Freedman H.I., Rai B., Waltman P. Mathematical models of population interaction with dispersal: differential survival in a change of habtat. J. Math. Anal. Appl. 115:1986;140-154.
    • (1986) J. Math. Anal. Appl. , vol.115 , pp. 140-154
    • Freedman, H.I.1    Rai, B.2    Waltman, P.3
  • 11
    • 0042728840 scopus 로고
    • Dynamics of a single species in a spatially varying environment: The stabilizing role of high dispersal rates
    • Hastings A. Dynamics of a single species in a spatially varying environment: the stabilizing role of high dispersal rates. J. Math. Biol. 28:1985;181-208.
    • (1985) J. Math. Biol. , vol.28 , pp. 181-208
    • Hastings, A.1
  • 12
    • 0028359362 scopus 로고
    • Predator-prey dynamics in models of prey dispersal in two-patch environments
    • Kuang Y., Takeuchi Y. Predator-prey dynamics in models of prey dispersal in two-patch environments. Math. Biosci. 120:1994;77-98.
    • (1994) Math. Biosci. , vol.120 , pp. 77-98
    • Kuang, Y.1    Takeuchi, Y.2
  • 13
    • 0000793907 scopus 로고
    • Dispersion and population interactions
    • Levin S.A. Dispersion and population interactions. Am. Nat. 108:1974;207-228.
    • (1974) Am. Nat. , vol.108 , pp. 207-228
    • Levin, S.A.1
  • 14
    • 36849153282 scopus 로고
    • Hypothesis to explain the origion of planktonic patchness
    • Levin S.A., Segel L.A. Hypothesis to explain the origion of planktonic patchness. Nature. 259:1976;659.
    • (1976) Nature , vol.259 , pp. 659
    • Levin, S.A.1    Segel, L.A.2
  • 15
    • 0002246746 scopus 로고
    • Global asymptotic behavior in single-species discrete diffusion systems
    • Lu Z., Takeuchi Y. Global asymptotic behavior in single-species discrete diffusion systems. J. Math. Biol. 32:1993;67-77.
    • (1993) J. Math. Biol. , vol.32 , pp. 67-77
    • Lu, Z.1    Takeuchi, Y.2
  • 16
    • 38249040904 scopus 로고
    • Global stability in generalized Lotka-Volterra diffusive systems
    • Takeuchi Y. Global stability in generalized Lotka-Volterra diffusive systems. J. Math. Anal. Appl. 116:1986;209-221.
    • (1986) J. Math. Anal. Appl. , vol.116 , pp. 209-221
    • Takeuchi, Y.1
  • 17
    • 0022870590 scopus 로고
    • Diffusion effect on stability of Lotka-Volterra models
    • Takeuchi Y. Diffusion effect on stability of Lotka-Volterra models. Bull. Math. Biol. 46:1986;586-601.
    • (1986) Bull. Math. Biol. , vol.46 , pp. 586-601
    • Takeuchi, Y.1
  • 18
    • 0002296770 scopus 로고
    • Cooperative systems theory and global stability of diffusion models
    • Takeuchi Y. Cooperative systems theory and global stability of diffusion models. Acta Appl. Math. 14:1989;49-57.
    • (1989) Acta Appl. Math. , vol.14 , pp. 49-57
    • Takeuchi, Y.1
  • 19
    • 0024689676 scopus 로고
    • Diffusion-mediated persistence in two-species competition Lotka-Volterra model
    • Takeuchi Y. Diffusion-mediated persistence in two-species competition Lotka-Volterra model. Math. Biosci. 95:1989;65-83.
    • (1989) Math. Biosci. , vol.95 , pp. 65-83
    • Takeuchi, Y.1
  • 20
    • 0025162583 scopus 로고
    • Conflict between the need to forage and the need to avoid competition: Persistence of two-species model
    • Takeuchi Y. Conflict between the need to forage and the need to avoid competition: persistence of two-species model. Math. Biosci. 99:1990;181-194.
    • (1990) Math. Biosci. , vol.99 , pp. 181-194
    • Takeuchi, Y.1
  • 21
    • 0021623121 scopus 로고
    • The effect of dispersal on population stability in one-species, discrete space population growth models
    • Vance R.R. The effect of dispersal on population stability in one-species, discrete space population growth models. Am. Nat. 123:1984;230-254.
    • (1984) Am. Nat. , vol.123 , pp. 230-254
    • Vance, R.R.1
  • 22
    • 0001028228 scopus 로고    scopus 로고
    • Global stability of a population dispersal in a two-patch environment
    • Wang W., Chen L. Global stability of a population dispersal in a two-patch environment. Dyn. Syst. Appl. 6:1997;207-216.
    • (1997) Dyn. Syst. Appl. , vol.6 , pp. 207-216
    • Wang, W.1    Chen, L.2
  • 23
    • 0031060733 scopus 로고    scopus 로고
    • Asymptotic behavior of a predator-prey system with diffusion and delays
    • Wang W., Ma Z. Asymptotic behavior of a predator-prey system with diffusion and delays. J. Math. Anal. Appl. 206:1997;191-204.
    • (1997) J. Math. Anal. Appl. , vol.206 , pp. 191-204
    • Wang, W.1    Ma, Z.2
  • 24
    • 0034249333 scopus 로고    scopus 로고
    • Persistence and stability for a two-species ratio-dependent predator-prey system with time delay in a two-patch environment
    • Xu R., Chen L. Persistence and stability for a two-species ratio-dependent predator-prey system with time delay in a two-patch environment. Comput. Math. Appl. 40:2000;577-588.
    • (2000) Comput. Math. Appl. , vol.40 , pp. 577-588
    • Xu, R.1    Chen, L.2
  • 25
    • 0033197434 scopus 로고    scopus 로고
    • Persistence and global stability for two-species nonautonomous competition Lotka-Volterra patch-system with time delay
    • Zhang J., Chen L., Chen X. Persistence and global stability for two-species nonautonomous competition Lotka-Volterra patch-system with time delay. Nonlinear Anal. TMA. 37:1999;1019-1028.
    • (1999) Nonlinear Anal. TMA , vol.37 , pp. 1019-1028
    • Zhang, J.1    Chen, L.2    Chen, X.3
  • 30
    • 0030589781 scopus 로고    scopus 로고
    • Convergence results in a well-known delayed predator-prey system
    • Beretta E., Kuang Y. Convergence results in a well-known delayed predator-prey system. J. Math. Anal. Appl. 204:1996;840-853.
    • (1996) J. Math. Anal. Appl. , vol.204 , pp. 840-853
    • Beretta, E.1    Kuang, Y.2
  • 31
    • 0000429668 scopus 로고
    • Harmless delay in model systems
    • Gopalsamy K. Harmless delay in model systems. Bull. Math. Biol. 45:1983;295-309.
    • (1983) Bull. Math. Biol. , vol.45 , pp. 295-309
    • Gopalsamy, K.1
  • 32
    • 0005686511 scopus 로고
    • Delayed responses and stability in two-species systems
    • Gopalsamy K. Delayed responses and stability in two-species systems. J. Aust. Math. Soc. Ser. B. 25:1984;473-500.
    • (1984) J. Aust. Math. Soc. Ser. B , vol.25 , pp. 473-500
    • Gopalsamy, K.1
  • 33
    • 0021742869 scopus 로고
    • Delays in recruitment at different trophic levels: Effects on stability
    • Hastings A. Delays in recruitment at different trophic levels: effects on stability. J. Math. Biol. 21:1984;35-44.
    • (1984) J. Math. Biol. , vol.21 , pp. 35-44
    • Hastings, A.1
  • 34
    • 0001249569 scopus 로고
    • Time delay versus stability in population models with two and three trophic levels
    • May R.M. Time delay versus stability in population models with two and three trophic levels. Ecology. 4:1973;315-325.
    • (1973) Ecology , vol.4 , pp. 315-325
    • May, R.M.1
  • 35
    • 0035281981 scopus 로고    scopus 로고
    • Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays
    • Ruan S. Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays. Quart. Appl. Math. 59:2001;159-173.
    • (2001) Quart. Appl. Math. , vol.59 , pp. 159-173
    • Ruan, S.1
  • 36
    • 44949279431 scopus 로고
    • Harmless delays for uniform persistence
    • Wang W., Ma Z. Harmless delays for uniform persistence. J. Math. Anal. Appl. 158:1991;256-268.
    • (1991) J. Math. Anal. Appl. , vol.158 , pp. 256-268
    • Wang, W.1    Ma, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.