-
1
-
-
0029192321
-
Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale = 3
-
C. K. Chui and J.-A. Lian, Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale = 3, Appl. Comput. Harmon. Anal. 2 (1995), 21-51.
-
(1995)
Appl. Comput. Harmon. Anal.
, vol.2
, pp. 21-51
-
-
Chui, C.K.1
Lian, J.-A.2
-
2
-
-
0030103777
-
A study of orthonormal multi-wavelets
-
C. K. Chui and J.-A. Lian, A study of orthonormal multi-wavelets, J. Appl. Numer. Math. 20 (1996), 272-298.
-
(1996)
J. Appl. Numer. Math.
, vol.20
, pp. 272-298
-
-
Chui, C.K.1
Lian, J.-A.2
-
3
-
-
84983630509
-
Ondelettes, analyses multirésolutions et filtres miroir en quadrature
-
A. Cohen, Ondelettes, analyses multirésolutions et filtres miroir en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 439-459.
-
(1990)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.7
, pp. 439-459
-
-
Cohen, A.1
-
4
-
-
84990623513
-
Biorthogonal bases of compactly supported wavelets
-
A. Cohen, I. Daubechies, and J. C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), 485-560.
-
(1992)
Comm. Pure Appl. Math.
, vol.45
, pp. 485-560
-
-
Cohen, A.1
Daubechies, I.2
Feauveau, J.C.3
-
6
-
-
84990575058
-
Orthonormal basis of compactly supported wavelets
-
I. Daubechies, Orthonormal basis of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996.
-
(1988)
Comm. Pure Appl. Math.
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
7
-
-
0001544864
-
Fractal functions and wavelet expansions based on several scaling functions
-
J. S. Geronimo, D. P. Hardin, and P. R. Massopust, Fractal functions and wavelet expansions based on several scaling functions, J. Approx. Theory 78 (1994), 373-401.
-
(1994)
J. Approx. Theory
, vol.78
, pp. 373-401
-
-
Geronimo, J.S.1
Hardin, D.P.2
Massopust, P.R.3
-
8
-
-
0028446064
-
Orthogonality criteria for compactly supported scaling functions
-
K. Gröchenig, Orthogonality criteria for compactly supported scaling functions, Appl. Comput. Harmon. Anal. 1 (1994), 242-245.
-
(1994)
Appl. Comput. Harmon. Anal.
, vol.1
, pp. 242-245
-
-
Gröchenig, K.1
-
10
-
-
0030526693
-
Approximation by translates of refinable functions
-
C. Heil, G. Strang, and V. Strela, Approximation by translates of refinable functions, Numer. Math. 73 (1996) 75-94.
-
(1996)
Numer. Math.
, vol.73
, pp. 75-94
-
-
Heil, C.1
Strang, G.2
Strela, V.3
-
12
-
-
0002888350
-
Using the refinement equations for the construction of pre-wavelets. II. Powers of two
-
(P. J. Laurent, A. Lé Méhauté, and L. L. Schumaker, Eds.), Academic Press, New York
-
R. Q. Jia and C. A. Micchelli, Using the refinement equations for the construction of pre-wavelets. II. Powers of two, in "Curves and Surfaces" (P. J. Laurent, A. Lé Méhauté, and L. L. Schumaker, Eds.), pp. 205-246, Academic Press, New York, 1991.
-
(1991)
Curves and Surfaces
, pp. 205-246
-
-
Jia, R.Q.1
Micchelli, C.A.2
-
14
-
-
0000977513
-
Tight frames of compactly supported wavelets
-
W. Lawton, Tight frames of compactly supported wavelets, J. Math. Phys. 31 (1990), 1898-1901.
-
(1990)
J. Math. Phys.
, vol.31
, pp. 1898-1901
-
-
Lawton, W.1
-
15
-
-
0009652870
-
Necessary and sufficient conditions for constructing orthonormal wavelet bases
-
W. Lawton, Necessary and sufficient conditions for constructing orthonormal wavelet bases, J. Math. Phys. 32 (1991), 57-61.
-
(1991)
J. Math. Phys.
, vol.32
, pp. 57-61
-
-
Lawton, W.1
-
16
-
-
85030055628
-
Stability and orthonormality of multidimensional refinable functions
-
to appear
-
W. Lawton, S. L. Lee, and Z. Shen, Stability and orthonormality of multidimensional refinable functions, SIAM J. Math. Anal., to appear.
-
SIAM J. Math. Anal.
-
-
Lawton, W.1
Lee, S.L.2
Shen, Z.3
-
17
-
-
0040958543
-
Characterization of the order of polynomial-reproduction for multi-scaling functions
-
(C. K. Chui and L. L. Schumaker, Eds.), World Scientific, Singapore
-
J.-A. Lian, Characterization of the order of polynomial-reproduction for multi-scaling functions, in "Approximation Theory VIII" (C. K. Chui and L. L. Schumaker, Eds.), pp. 251-258, World Scientific, Singapore, 1995.
-
(1995)
Approximation Theory VIII
, pp. 251-258
-
-
Lian, J.-A.1
-
18
-
-
0346207045
-
On the order of polynomial reproduction for multi-scaling functions
-
J.-A. Lian, On the order of polynomial reproduction for multi-scaling functions, Appl. Comput. Harmon. Anal. 3 (1996), 358-365.
-
(1996)
Appl. Comput. Harmon. Anal.
, vol.3
, pp. 358-365
-
-
Lian, J.-A.1
-
19
-
-
0346207048
-
Orthonormal Multi-wavelets with Small Supports
-
Dec.
-
J.-A. Lian, "Orthonormal Multi-wavelets with Small Supports," CAT Report 368, Dec. 1995.
-
(1995)
CAT Report
, vol.368
-
-
Lian, J.-A.1
-
20
-
-
84966210236
-
Multiresolution approximation and wavelets
-
S. Mallat, Multiresolution approximation and wavelets, Trans. Amer. Math. Soc. 315 (1989), 69-88.
-
(1989)
Trans. Amer. Math. Soc.
, vol.315
, pp. 69-88
-
-
Mallat, S.1
-
21
-
-
0001106889
-
On the support properties of scaling vectors
-
P. R. Massopust, D. K. Ruch, and P. J. Van Fleet, On the support properties of scaling vectors, Appl. Comput. Harmon. Anal. 3 (1996), 229-238.
-
(1996)
Appl. Comput. Harmon. Anal.
, vol.3
, pp. 229-238
-
-
Massopust, P.R.1
Ruch, D.K.2
Van Fleet, P.J.3
-
22
-
-
0042606488
-
Approximation order provided by refinable function vectors
-
to appear
-
G. Plonka, Approximation order provided by refinable function vectors, Constr. Approx., to appear.
-
Constr. Approx.
-
-
Plonka, G.1
-
23
-
-
0028478812
-
Orthonormal multi-wavelets with vanishing moments
-
G. Strang and V. Strela, Orthonormal multi-wavelets with vanishing moments, J. Opt. Eng. 33 (1994), 2104-2107.
-
(1994)
J. Opt. Eng.
, vol.33
, pp. 2104-2107
-
-
Strang, G.1
Strela, V.2
|