메뉴 건너뛰기




Volumn 41, Issue 1, 2001, Pages 179-190

Convergence of the multigrid method for ill-conditioned block Toeplitz systems

Author keywords

Block Toeplitz matrix; Multigrid method

Indexed keywords


EID: 0141936364     PISSN: 00063835     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1021978020255     Document Type: Article
Times cited : (31)

References (13)
  • 2
    • 0001234212 scopus 로고    scopus 로고
    • Multigrid method for ill-conditioned symmetric Toeplitz systems
    • R. Chan, Q. Chang, and H. Sun, Multigrid method for ill-conditioned symmetric Toeplitz systems, SIAM J. Sci. Comput., 19 (1998), pp. 516-529.
    • (1998) SIAM J. Sci. Comput. , vol.19 , pp. 516-529
    • Chan, R.1    Chang, Q.2    Sun, H.3
  • 3
    • 0000746140 scopus 로고
    • A family of block preconditioners for block systems
    • R. Chan and X.-Q. Jin, A family of block preconditioners for block systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 1218-1235.
    • (1992) SIAM J. Sci. Statist. Comput. , vol.13 , pp. 1218-1235
    • Chan, R.1    Jin, X.-Q.2
  • 4
    • 0030246195 scopus 로고    scopus 로고
    • Conjugate gradient methods for Toeplitz systems
    • R. Chan and M. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Review, 38 (1996), 427-482.
    • (1996) SIAM Review , vol.38 , pp. 427-482
    • Chan, R.1    Ng, M.2
  • 5
    • 0030137804 scopus 로고    scopus 로고
    • On the algebraic multigrid method
    • Q. Chang, Y. Wong, and H. Fu, On the algebraic multigrid method, J. Comput. Phys., 125 (1996), pp. 279-292.
    • (1996) J. Comput. Phys. , vol.125 , pp. 279-292
    • Chang, Q.1    Wong, Y.2    Fu, H.3
  • 6
    • 51249172268 scopus 로고
    • Multigrid methods for Toeplitz matrices
    • G. Fiorentino and S. Serra, Multigrid methods for Toeplitz matrices, Calcolo, 28 (1991), pp. 283-305.
    • (1991) Calcolo , vol.28 , pp. 283-305
    • Fiorentino, G.1    Serra, S.2
  • 7
    • 0000438265 scopus 로고    scopus 로고
    • Multigrid methods for symmetric positive definite block Toeplitz matrices with nonnegative generating functions
    • G. Fiorentino and S. Serra, Multigrid methods for symmetric positive definite block Toeplitz matrices with nonnegative generating functions, SIAM J. Sci. Comput., 17 (1996), pp. 1068-1081.
    • (1996) SIAM J. Sci. Comput. , vol.17 , pp. 1068-1081
    • Fiorentino, G.1    Serra, S.2
  • 8
    • 0042349210 scopus 로고
    • A note on preconditioned block Toeplitz matrices
    • X.-Q. Jin, A note on preconditioned block Toeplitz matrices, SIAM J. Sci. Comput., 16 (1995), pp. 951-955.
    • (1995) SIAM J. Sci. Comput. , vol.16 , pp. 951-955
    • Jin, X.-Q.1
  • 9
    • 0029708924 scopus 로고    scopus 로고
    • Fast iterative solvers for symmetric Toeplitz systems - A survey and an extension
    • X.-Q. Jin, Fast iterative solvers for symmetric Toeplitz systems - a survey and an extension, J. Comput. Appl. Math., 66 (1996), pp. 315-321.
    • (1996) J. Comput. Appl. Math. , vol.66 , pp. 315-321
    • Jin, X.-Q.1
  • 10
    • 0030172609 scopus 로고    scopus 로고
    • Band Toeplitz preconditioners for the block Toeplitz systems
    • X.-Q. Jin, Band Toeplitz preconditioners for the block Toeplitz systems, J. Comput. Appl. Math., 70 (1996), pp. 225-230.
    • (1996) J. Comput. Appl. Math. , vol.70 , pp. 225-230
    • Jin, X.-Q.1
  • 11
    • 0001885411 scopus 로고
    • Algebraic multigrid
    • S. F. McCormick ed., Frontiers in Applied Mathematics 3, SIAM, Philadephia, PA
    • J. Ruge and K. Stuben, Algebraic multigrid, in Multigrid Methods, S. F. McCormick ed., Frontiers in Applied Mathematics 3, SIAM, Philadephia, PA, 1987.
    • (1987) Multigrid Methods
    • Ruge, J.1    Stuben, K.2
  • 12
    • 20744448636 scopus 로고
    • Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems
    • S. Serra, Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems, BIT, 34 (1994), pp. 579-594.
    • (1994) BIT , vol.34 , pp. 579-594
    • Serra, S.1
  • 13
    • 0031189412 scopus 로고    scopus 로고
    • A note on the convergence of the two-grid method for Toeplitz systems
    • H. Sun, R. Chan, and Q. Chang, A note on the convergence of the two-grid method for Toeplitz systems, Comput. Math. Appl., 34 (1997), pp. 11-18.
    • (1997) Comput. Math. Appl. , vol.34 , pp. 11-18
    • Sun, H.1    Chan, R.2    Chang, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.