메뉴 건너뛰기




Volumn 41, Issue 9 PART I, 2003, Pages 2101-2112

Improving the performance of classifiers in high-dimensional remote sensing applications: An adaptive resampling strategy for error-prone exemplars (ARESEPE)

Author keywords

Active learning; Active sampling; Barrier islands; Hyperspectral; Land cover classification; Virginia coast reserve

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; IMAGE ANALYSIS; ONLINE SYSTEMS; OPTIMIZATION; STATISTICAL MECHANICS;

EID: 0141905876     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2003.817207     Document Type: Article
Times cited : (16)

References (15)
  • 5
    • 0004310291 scopus 로고    scopus 로고
    • Research Systems, Inc., Boulder, CO
    • ENVI 3.4 User's Guide, Research Systems, Inc., Boulder, CO, 2000.
    • (2000) ENVI 3.4 User's Guide
  • 6
    • 0033372875 scopus 로고    scopus 로고
    • The significance of border training patterns in classification by a feedforward neural network using back propagation learning
    • G. M. Foody, "The significance of border training patterns in classification by a feedforward neural network using back propagation learning," Int. J. Remote Sens., vol. 20, no. 18, pp. 3549-3562, 1999.
    • (1999) Int. J. Remote Sens. , vol.20 , Issue.18 , pp. 3549-3562
    • Foody, G.M.1
  • 7
    • 0033640737 scopus 로고    scopus 로고
    • Statistical active learning in multilayer perceptrons
    • Jan.
    • K. Fukumizu, "Statistical active learning in multilayer perceptrons," IEEE Trans. Neural Networks, vol. 11, pp. 17-26, Jan. 2000.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 17-26
    • Fukumizu, K.1
  • 8
    • 0001447214 scopus 로고    scopus 로고
    • Development of a line-by-line atmosphere removal algorithm for airborne and spaceborne imaging spectrometers
    • B. Gao and C. O. Davis, "Development of a line-by-line atmosphere removal algorithm for airborne and spaceborne imaging spectrometers," Proc. SPIE, vol. 3118, pp. 132-141, 1997.
    • (1997) Proc. SPIE , vol.3118 , pp. 132-141
    • Gao, B.1    Davis, C.O.2
  • 9
    • 0025721732 scopus 로고
    • Query-based learning applied to partially trained multilayer perceptrons
    • Jan.
    • J.-N. Hwang, J. J. Choi, S. Oh, and R. J. M. II, "Query-based learning applied to partially trained multilayer perceptrons," IEEE Trans. Neural Networks, Vol. 2, pp. 131-136, Jan. 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 131-136
    • Hwang, J.-N.1    Choi, J.J.2    Oh, S.3    II, R.J.M.4
  • 10
    • 0026982122 scopus 로고
    • Discriminative learning for minimum error classification
    • Dec.
    • J. H. Juang and S. Katagiri, "Discriminative learning for minimum error classification," IEEE Trans. Signal Processing, vol. 40, pp. 3043-3054, Dec. 1992.
    • (1992) IEEE Trans. Signal Processing , vol.40 , pp. 3043-3054
    • Juang, J.H.1    Katagiri, S.2
  • 12
    • 0029719662 scopus 로고    scopus 로고
    • Adaptive on-line learning of optimal decision boundary using active sampling
    • S. Usui, Y. Tohkura, S. Katagiri, and E. Wilson, Eds., Kyoto, Japan
    • J.-M. Park and Y. H. Hu, "Adaptive on-line learning of optimal decision boundary using active sampling," in Proc. 1996 Workshop Neural Networks for Signal Processing VI, S. Usui, Y. Tohkura, S. Katagiri, and E. Wilson, Eds., Kyoto, Japan, 1996, pp. 253-262.
    • (1996) Proc. 1996 Workshop Neural Networks for Signal Processing VI , pp. 253-262
    • Park, J.-M.1    Hu, Y.H.2
  • 13
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • M. D. Richard and R. P. Lippman, "Neural network classifiers estimate Bayesian a posteriori probabilities," Neural Comput., 3, pp. 461-483, 1991.
    • (1991) Neural Comput. , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippman, R.P.2
  • 15
    • 0029725165 scopus 로고    scopus 로고
    • An incremental learning method with relearning of recalled interfered patterns
    • S. Usui, Y. Tohkura, S. Katagiri, and E. Wilson, Eds., Kyoto, Japan
    • K. Yamauchi, N. Yamaguchi, and N. Ishii, "An incremental learning method with relearning of recalled interfered patterns," in Proc. 1996 Workshop Neural Networks for Signal Processing VI, S. Usui, Y. Tohkura, S. Katagiri, and E. Wilson, Eds., Kyoto, Japan, 1996, 243-252.
    • (1996) Proc. 1996 Workshop Neural Networks for Signal Processing VI , pp. 243-252
    • Yamauchi, K.1    Yamaguchi, N.2    Ishii, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.