-
2
-
-
38249028432
-
Steady-state solution of Fokker-Planck equation in high dimension
-
SOIZE, C.: Steady-state solution of Fokker-Planck equation in high dimension. Probab. Engin. Mech. 3 (1991) 4, 196-206.
-
(1991)
Probab. Engin. Mech.
, vol.3
, Issue.4
, pp. 196-206
-
-
Soize, C.1
-
3
-
-
0002971397
-
A general numerical solution method for Fokker-Planck equations with application to structural reliability
-
LANGTANGEN, H. P.: A general numerical solution method for Fokker-Planck equations with application to structural reliability. Probab. Engin. Mech. 3 (1991) 1, 33-48.
-
(1991)
Probab. Engin. Mech.
, vol.3
, Issue.1
, pp. 33-48
-
-
Langtangen, H.P.1
-
4
-
-
0027649438
-
On the numerical solution of Fokker-Planck equation for nonlinear stochastic systems
-
SPENCER, B. F.; BERGMAN, L. A.: On the numerical solution of Fokker-Planck equation for nonlinear stochastic systems. Nonlinear Dynamics 4 (1993), 357-372.
-
(1993)
Nonlinear Dynamics
, vol.4
, pp. 357-372
-
-
Spencer, B.F.1
Bergman, L.A.2
-
7
-
-
85034184038
-
On the uniqueness condition of the solution of a system of stochastic differential equations
-
in Russian
-
LEBEDEV, V. A.: On the uniqueness condition of the solution of a system of stochastic differential equations. Teor. Veroyatn. Primen. 21 (1981) 2 (in Russian).
-
(1981)
Teor. Veroyatn. Primen.
, vol.21
, Issue.2
-
-
Lebedev, V.A.1
-
8
-
-
0001346915
-
On the existence, uniqueness, convergence, and explosions of solutions of systems of stochastic differential equations
-
PROTTER, P. E.: On the existence, uniqueness, convergence, and explosions of solutions of systems of stochastic differential equations. Ann. Probab. 5 (1977) 2, 243-261.
-
(1977)
Ann. Probab.
, vol.5
, Issue.2
, pp. 243-261
-
-
Protter, P.E.1
-
9
-
-
0001761644
-
A limit theorem for the solution of a differential equation with random right-hand side
-
in Russian
-
KHASMINSKII, R. Z.: A limit theorem for the solution of a differential equation with random right-hand side. Teor. Veroyatn. Primen. 11 (1966) 2 (in Russian).
-
(1966)
Teor. Veroyatn. Primen.
, vol.11
, Issue.2
-
-
Khasminskii, R.Z.1
-
11
-
-
0007090390
-
Stochastic differential equations in Hilbert space
-
CURTAIN, R. F.; FALB, P. L.: Stochastic differential equations in Hilbert space. J. Differential Equations 10 (1971) 3.
-
(1971)
J. Differential Equations
, vol.10
, Issue.3
-
-
Curtain, R.F.1
Falb, P.L.2
-
12
-
-
0348139049
-
Stochastic evolution equations with general white noise disturbance
-
CURTAIN, R. F.: Stochastic evolution equations with general white noise disturbance. J. Math. Analysis Appl. 60 (1977), 570-595.
-
(1977)
J. Math. Analysis Appl.
, vol.60
, pp. 570-595
-
-
Curtain, R.F.1
-
13
-
-
0001352872
-
Asymptotic stability of linear Itô stochastic equation
-
HAUSSMANN, U. G.: Asymptotic stability of linear Itô stochastic equation. Teor. Veroyatn. Primen. 65 (1978), 219-235.
-
(1978)
Teor. Veroyatn. Primen.
, vol.65
, pp. 219-235
-
-
Haussmann, U.G.1
-
14
-
-
26444605914
-
Linear stochastic evolution equations in Hilbert space
-
ICHIKAWA, A.: Linear stochastic evolution equations in Hilbert space. J. Differential Equations 28 (1978), 266-277.
-
(1978)
J. Differential Equations
, vol.28
, pp. 266-277
-
-
Ichikawa, A.1
-
15
-
-
0009184859
-
Structural properties and limit behavior of linear stochastic systems in Hilbert space
-
PWN, Warszawa
-
ZABCZYK, J.: Structural properties and limit behavior of linear stochastic systems in Hilbert space. In: Math. control theory. Wyd. Centrum Banacha, T. 14, PWN, Warszawa 1985.
-
(1985)
Math. Control Theory. Wyd. Centrum Banacha
, vol.14
-
-
Zabczyk, J.1
-
16
-
-
0001241006
-
Regularity of solutions of linear stochastic differential equations in Hilbert space
-
DA PRATO, G.; KWAPIEŃ, S.; ZABCZYK, J.: Regularity of solutions of linear stochastic differential equations in Hilbert space. Stochastics 23 (1987) 1, 1-23.
-
(1987)
Stochastics
, vol.23
, Issue.1
, pp. 1-23
-
-
Da Prato, G.1
Kwapień, S.2
Zabczyk, J.3
-
17
-
-
33748540334
-
On explosion of one-dimensional process under additive noise
-
SOBCZYK, J.: On explosion of one-dimensional process under additive noise. Demonstratio Math. 25 (1992), 1-2.
-
(1992)
Demonstratio Math.
, vol.25
, pp. 1-2
-
-
Sobczyk, J.1
-
18
-
-
0040174384
-
Explosion time of second order Itô process
-
NARITA, K.: Explosion time of second order Itô process. J. Math. Analysis Appl. 104 (1984), 418-427.
-
(1984)
J. Math. Analysis Appl.
, vol.104
, pp. 418-427
-
-
Narita, K.1
-
19
-
-
0030487210
-
Deterministic and stochastic Duffing-Van der Pol oscillators are non-explosive
-
SCHENK-HOPPÉ, K. R.: Deterministic and stochastic Duffing-Van der Pol oscillators are non-explosive. ZAMP 47 (1996), 740-759.
-
(1996)
ZAMP
, vol.47
, pp. 740-759
-
-
Schenk-Hoppé, K.R.1
-
22
-
-
33748553610
-
Effect of noise on the dynamics of nonlinear oscillator
-
WIESENFELD, K. A.; KNOBLOCH, E.: Effect of noise on the dynamics of nonlinear oscillator. Phys. Reviews A 26 (1982) 5.
-
(1982)
Phys. Reviews A
, vol.26
, Issue.5
-
-
Wiesenfeld, K.A.1
Knobloch, E.2
-
23
-
-
0022524005
-
Influence of noise on Duffing-Van der Pol oscillators
-
EBELING, W.; HERZEL, H.; RICHERT, W.; SCHIMANSKY-GEIER, L.: Influence of noise on Duffing-Van der Pol oscillators. ZAMM 66 (1986) 3, 141-146.
-
(1986)
ZAMM
, vol.66
, Issue.3
, pp. 141-146
-
-
Ebeling, W.1
Herzel, H.2
Richert, W.3
Schimansky-Geier, L.4
-
24
-
-
85034190426
-
-
Technical Report, Institute of Dynam. Systems, Universität Bremen
-
ARNOLD, L.; NAMACHCHIVAYA, S.; SCHENK-HOPPÉ, K. R.: Toward an understanding of stochastic Hopf bifurcation: a case study. Technical Report, Institute of Dynam. Systems, Universität Bremen 1996.
-
(1996)
Toward an Understanding of Stochastic Hopf Bifurcation: A Case Study
-
-
Arnold, L.1
Namachchivaya, S.2
Schenk-Hoppé, K.R.3
-
27
-
-
0039306776
-
-
KLIEMANN, W.; NAMACHCHIVAYA, S. (eds.): CRC Press, Boca Raton, London
-
KLIEMANN, W.; NAMACHCHIVAYA, S. (eds.): Nonlinear dynamics and stochastic mechanics. CRC Press, Boca Raton, London 1995.
-
(1995)
Nonlinear Dynamics and Stochastic Mechanics
-
-
-
29
-
-
11944266539
-
Information theory and statistical mechanics
-
JAYNES, E. T.: Information theory and statistical mechanics. Phys. Reviews 106 (1957), 620-630.
-
(1957)
Phys. Reviews
, vol.106
, pp. 620-630
-
-
Jaynes, E.T.1
-
30
-
-
0000562779
-
Information theory and variational principles in statistical theories
-
INGARDEN, R. S.: Information theory and variational principles in statistical theories. Bull. Acad. Polon., Ser. Math. Astron. Phys. 11 (1963), 541-547.
-
(1963)
Bull. Acad. Polon., Ser. Math. Astron. Phys.
, vol.11
, pp. 541-547
-
-
Ingarden, R.S.1
-
31
-
-
0014864732
-
First-excursion failure of randomly excited structures. P. II
-
LIN, Y. K.: First-excursion failure of randomly excited structures. P. II. AIAA J. 10 (1970) 8, 1888-1890.
-
(1970)
AIAA J.
, vol.10
, Issue.8
, pp. 1888-1890
-
-
Lin, Y.K.1
-
32
-
-
38249040936
-
On the estimation of failure probability having prescribed moments of first-passage time
-
Spencer, B. F.; Bergman, L. A.: On the estimation of failure probability having prescribed moments of first-passage time. Probab. Engin. Mech. 1 (1986) 3, 131-135.
-
(1986)
Probab. Engin. Mech.
, vol.1
, Issue.3
, pp. 131-135
-
-
Spencer, B.F.1
Bergman, L.A.2
-
33
-
-
0002540818
-
Maximum entropy principle in stochastic dynamics
-
SOBCZYK, K.; TRȨBICKI, J.: Maximum entropy principle in stochastic dynamics. Probab. Engin. Mech. 5 (1990) 3, 102-110.
-
(1990)
Probab. Engin. Mech.
, vol.5
, Issue.3
, pp. 102-110
-
-
Sobczyk, K.1
Trȩbicki, J.2
-
34
-
-
0001251986
-
Maximum entropy principle and nonlinear stochastic oscillators
-
SOBCZYK, K.; TRȨBICKI, J.: Maximum entropy principle and nonlinear stochastic oscillators. Physica A 193 (1993), 448-468.
-
(1993)
Physica A
, vol.193
, pp. 448-468
-
-
Sobczyk, K.1
Trȩbicki, J.2
-
35
-
-
0030196381
-
Maximum entropy principle and non-stationary distributions of stochastic systems
-
TRȨBICKI, J.; SOBCZYK, K.: Maximum entropy principle and non-stationary distributions of stochastic systems. Probab. Engin. Mech. 11 (1996), 169-178.
-
(1996)
Probab. Engin. Mech.
, vol.11
, pp. 169-178
-
-
Trȩbicki, J.1
Sobczyk, K.2
|