메뉴 건너뛰기




Volumn 66, Issue 3, 2000, Pages 608-610

Efficiency of the finite correction of Akaike's Information Criteria

Author keywords

AIC; BIC; c AIC; CPUE standardization; Finite correction; Growth curve; Model selection

Indexed keywords


EID: 0141848060     PISSN: 09199268     EISSN: None     Source Type: Journal    
DOI: 10.1046/j.1444-2906.2000.00095.x     Document Type: Article
Times cited : (70)

References (4)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Petrov BN, Csaki F (eds). Akademia Kiado, Budapest
    • Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds). Second International Symposium on Information Theory. Akademia Kiado, Budapest. 1973; 267-281.
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 84963178774 scopus 로고
    • Further analysis of the data by Akaike's information criterion and the finite correction
    • Sugiura N. Further analysis of the data by Akaike's information criterion and the finite correction. Comm. Statist. A-Theory. Meth. 1978; 7: 13-26.
    • (1978) Comm. Statist. A-Theory. Meth. , vol.7 , pp. 13-26
    • Sugiura, N.1
  • 4
    • 70349119250 scopus 로고
    • Regression and time series model selection in small samples
    • Hurvich CM, Tsai CL. Regression and time series model selection in small samples. Biometrika 1989; 76: 297-307.
    • (1989) Biometrika , vol.76 , pp. 297-307
    • Hurvich, C.M.1    Tsai, C.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.