메뉴 건너뛰기




Volumn 10, Issue 2-3, 2002, Pages 143-164

Homotopical stability of isolated critical points of continuous functionals

Author keywords

Bifurcation; Nonsmooth critical point theory; Potential well theorem; Stability of isolated critical points

Indexed keywords


EID: 0141680206     PISSN: 09276947     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1016544301594     Document Type: Article
Times cited : (59)

References (23)
  • 1
    • 0036568069 scopus 로고    scopus 로고
    • Variational pairs and applications to stability in nonsmooth analysis
    • Azé D., Corvellec, J.-N. and Lucchetti, R. E.: Variational pairs and applications to stability in nonsmooth analysis, Nonlinear Anal. 49 (2002), 643-670.
    • (2002) Nonlinear Anal. , vol.49 , pp. 643-670
    • Azé, D.1    Corvellec, J.-N.2    Lucchetti, R.E.3
  • 3
    • 33747385182 scopus 로고
    • Deformation of functionals having a unique critical point
    • Bobylev, N. A.: Deformation of functionals having a unique critical point, Math. Notes (1984), 676-682, transl, from Mat. Zametki 34 (1983), 387-398.
    • (1984) Math. Notes , pp. 676-682
    • Bobylev, N.A.1
  • 4
    • 33747385182 scopus 로고
    • Bobylev, N. A.: Deformation of functionals having a unique critical point, Math. Notes (1984), 676-682, transl, from Mat. Zametki 34 (1983), 387-398.
    • (1983) Mat. Zametki , vol.34 , pp. 387-398
  • 6
    • 0141812099 scopus 로고
    • On a bifurcation theorem due to Rabinowitz
    • Chang, K. C.: On a bifurcation theorem due to Rabinowitz, J. Systems Sci. Math. Sci. 4 (1984), 191-195.
    • (1984) J. Systems Sci. Math. Sci. , vol.4 , pp. 191-195
    • Chang, K.C.1
  • 8
    • 0001035982 scopus 로고
    • Morse theory for continuous functionals
    • Corvellec, J.-N.: Morse theory for continuous functionals, J. Math. Anal. Appl. 196 (1995), 1050-1072.
    • (1995) J. Math. Anal. Appl. , vol.196 , pp. 1050-1072
    • Corvellec, J.-N.1
  • 9
    • 0001275469 scopus 로고    scopus 로고
    • Quantitative deformation theorems and critical point theory
    • Corvellec, J.-N.: Quantitative deformation theorems and critical point theory, Pacific J. Math. 187 (1999), 263-279.
    • (1999) Pacific J. Math. , vol.187 , pp. 263-279
    • Corvellec, J.-N.1
  • 11
    • 0001247026 scopus 로고
    • Deformation properties for continuous functionals and critical point theory
    • Corvellec, J.-N., Degiovanni, M. and Marzocchi, M.: Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal. 1 (1993), 151-171.
    • (1993) Topol. Methods Nonlinear Anal. , vol.1 , pp. 151-171
    • Corvellec, J.-N.1    Degiovanni, M.2    Marzocchi, M.3
  • 13
    • 0003095816 scopus 로고
    • A critical point theory for nonsmooth functionals
    • Degiovanni, M. and Marzocchi, M.: A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. 167 (1994), 73-100.
    • (1994) Ann. Mat. Pura Appl. , vol.167 , pp. 73-100
    • Degiovanni, M.1    Marzocchi, M.2
  • 15
    • 84966198944 scopus 로고
    • Nonconvex minimization problems
    • Ekeland, I.: Nonconvex minimization problems, Bull. Amer Math. Soc. 1 (1979), 443-474.
    • (1979) Bull. Amer Math. Soc. , vol.1 , pp. 443-474
    • Ekeland, I.1
  • 16
    • 0001381644 scopus 로고
    • On differentiable functions with isolated critical points
    • Gromoll, D. and Meyer, W.: On differentiable functions with isolated critical points, Topology 8 (1969), 361-369.
    • (1969) Topology , vol.8 , pp. 361-369
    • Gromoll, D.1    Meyer, W.2
  • 18
    • 0000676324 scopus 로고    scopus 로고
    • Metric critical point theory 1. Morse regularity and homotopic stability of a minimum
    • Ioffe, A. and Schwartzman, E.: Metric critical point theory 1. Morse regularity and homotopic stability of a minimum, J. Math. Pures Appl. 75 (1996), 125-153.
    • (1996) J. Math. Pures Appl. , vol.75 , pp. 125-153
    • Ioffe, A.1    Schwartzman, E.2
  • 19
    • 21944436802 scopus 로고    scopus 로고
    • An extension of the Rabinowitz bifurcation theorem to Lipschitz potential operators in Hilbert spaces
    • Ioffe, A. and Schwartzman, E.: An extension of the Rabinowitz bifurcation theorem to Lipschitz potential operators in Hilbert spaces, Proc. Amer Math. Soc. 125 (1997), 2725-2732.
    • (1997) Proc. Amer Math. Soc. , vol.125 , pp. 2725-2732
    • Ioffe, A.1    Schwartzman, E.2
  • 20
    • 85012287031 scopus 로고
    • Mountain pass theorems and global homeomorphism theorems
    • Katriel, G.: Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994),189-209.
    • (1994) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.11 , pp. 189-209
    • Katriel, G.1
  • 21
    • 0000526798 scopus 로고
    • A bifurcation theorem for potential operators
    • Rabinowitz, P. H.: A bifurcation theorem for potential operators, J. Funct. Anal. 25 (1977), 412-424.
    • (1977) J. Funct. Anal. , vol.25 , pp. 412-424
    • Rabinowitz, P.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.