-
1
-
-
0000671107
-
On the multivalued Poincaré operators
-
Andres, J.: On the multivalued Poincaré operators. Topol. Methods Nonlinear Anal. 10(1) (1997), 171-182.
-
(1997)
Topol. Methods Nonlinear Anal.
, vol.10
, Issue.1
, pp. 171-182
-
-
Andres, J.1
-
2
-
-
0141477408
-
-
Proc. Conf. Murcia, Spain, 13-18 June
-
Alseda, L., Balibrea, F., Llibre, J. and Misiurewicz, M. (eds): Thirty Years after Sharkovskii's Theorem: New Perspectives, Proc. Conf. Murcia, Spain, 13-18 June, 1994. Reprint of the Internat. J. Bifur Chaos Appl. Sci. Engrg. 5(5) (1995)
-
(1994)
Thirty Years After Sharkovskii's Theorem: New Perspectives
-
-
Alseda, L.1
Balibrea, F.2
Llibre, J.3
Misiurewicz, M.4
-
3
-
-
0141588956
-
-
Alseda, L., Balibrea, F., Llibre, J. and Misiurewicz, M. (eds): Thirty Years after Sharkovskii's Theorem: New Perspectives, Proc. Conf. Murcia, Spain, 13-18 June, 1994. Reprint of the Internat. J. Bifur Chaos Appl. Sci. Engrg. 5(5) (1995).
-
(1995)
Internat. J. Bifur Chaos Appl. Sci. Engrg.
, vol.5
, Issue.5
-
-
-
4
-
-
0004543434
-
On the extension of approximations for set-valued maps and the repulsive fixed points
-
Bader, R., Gabor, G. and Kryszewski, W.: On the extension of approximations for set-valued maps and the repulsive fixed points, Boll. Un. Mat. Ital. B (7) 10 (1996), 399-416.
-
(1996)
Boll. Un. Mat. Ital. B (7)
, vol.10
, pp. 399-416
-
-
Bader, R.1
Gabor, G.2
Kryszewski, W.3
-
6
-
-
0038020779
-
Homological methods in fixed-point theory of multi-valued maps
-
Górniewicz, L.: Homological methods in fixed-point theory of multi-valued maps. Diss. Math. 129 (1976), 1-71.
-
(1976)
Diss. Math.
, vol.129
, pp. 1-71
-
-
Górniewicz, L.1
-
8
-
-
0009364704
-
Integral of multivalued mappings and its connection with differential relations
-
Jarník, J. and Kurzweil, J.: Integral of multivalued mappings and its connection with differential relations, Časopis Pěst. Mat. 108 (1983), 8-28.
-
(1983)
Časopis Pěst. Mat.
, vol.108
, pp. 8-28
-
-
Jarník, J.1
Kurzweil, J.2
-
10
-
-
0000100336
-
Period three implies chaos
-
Li, T. and Yorke, J.: Period three implies chaos, Amer Math. Monthly 82 (1975), 985-992.
-
(1975)
Amer Math. Monthly
, vol.82
, pp. 985-992
-
-
Li, T.1
Yorke, J.2
-
12
-
-
0004043484
-
-
CRC Press, Boca Raton
-
Robinson, C.: Dynamical Systems (Stability, Symbolic Dynamics, and Chaos), CRC Press, Boca Raton, 1995.
-
(1995)
Dynamical Systems (Stability, Symbolic Dynamics, and Chaos)
-
-
Robinson, C.1
-
13
-
-
0002072428
-
Coexistence of cycles of a continuous map of a line into itself
-
Russian
-
Sharkovskii, A. N.: Coexistence of cycles of a continuous map of a line into itself, Ukrainian Math. J. 16 (1964), 61-71 (Russian).
-
(1964)
Ukrainian Math. J.
, vol.16
, pp. 61-71
-
-
Sharkovskii, A.N.1
|