메뉴 건너뛰기




Volumn 110, Issue 19, 1988, Pages 6291-6297

Combined 2H and 18O isotope effects in support of a concerted, synchronous elimination of acetaldehyde from a bis(benzyl ethyl ether) radical cation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0141670698     PISSN: 00027863     EISSN: 15205126     Source Type: Journal    
DOI: 10.1021/ja00227a002     Document Type: Article
Times cited : (18)

References (20)
  • 3
    • 0000391169 scopus 로고
    • (b) McLafferty, F. W. Anal. Chem. 1959, 31, 82. (c) Kingston, D. G. I.; Bursey, J. T.; Bursey, M. M. Chem. Rev. 1974, 2, 215.
    • McLafferty, F. W. Anal. Chem. 1956, 28, 306. (b) McLafferty, F. W. Anal. Chem. 1959, 31, 82. (c) Kingston, D. G. I.; Bursey, J. T.; Bursey, M. M. Chem. Rev. 1974, 2, 215.
    • (1956) Anal. Chem. , vol.28 , pp. 306
    • McLafferty, F.W.1
  • 4
    • 0000455796 scopus 로고
    • (b) Liedtke, R. J.; Djerassi, C. J. Am. Chem. Soc. 1969, 91, 6814. (c) Fenselau, C.; Young, J. L.; Meyerson, S.; Landis, W.; Selke, E.; Leitch, L. C. J. Am. Chem. Soc. 1969, 91, 6847. (d) Derrick, P. J.; Falick, A. M.; Lewis, S.; Burlingame, A. L. J. Phys. Chem. 1979, 83, 1567.
    • Gilpin, J. A.; McLafferty, F. W. Anal. Chem. 1957, 29, 990. (b) Liedtke, R. J.; Djerassi, C. J. Am. Chem. Soc. 1969, 91, 6814. (c) Fenselau, C.; Young, J. L.; Meyerson, S.; Landis, W.; Selke, E.; Leitch, L. C. J. Am. Chem. Soc. 1969, 91, 6847. (d) Derrick, P. J.; Falick, A. M.; Lewis, S.; Burlingame, A. L. J. Phys. Chem. 1979, 83, 1567.
    • (1957) Anal. Chem. , vol.29 , pp. 990
    • Gilpin, J.A.1    McLafferty, F.W.2
  • 6
    • 0001024311 scopus 로고
    • (b) McAdoo, D. J.; Hudson, C. E. J. Am. Chem. Soc. 1981, 103, 7710. (c) Weber, R.; Levsen, K.; Wesdemiotis, C.; Weiske, T.; Schwarz, H. Int. J. Mass Spectrom. Ion Phys. 1982, 43, 131. (d) Zwinselman, J. J.; Nibbering, N. M. M.; Hudson, C. E.; McAdoo, J. J. Int. J. Mass Spectrom. Ion Phys. 1983, 47, 129.
    • Witiak, D. N.; McLafferty, F. W.; Dill, J. D. J. Am. Chem. Soc. 1978, 100, 6639. (b) McAdoo, D. J.; Hudson, C. E. J. Am. Chem. Soc. 1981, 103, 7710. (c) Weber, R.; Levsen, K.; Wesdemiotis, C.; Weiske, T.; Schwarz, H. Int. J. Mass Spectrom. Ion Phys. 1982, 43, 131. (d) Zwinselman, J. J.; Nibbering, N. M. M.; Hudson, C. E.; McAdoo, J. J. Int. J. Mass Spectrom. Ion Phys. 1983, 47, 129.
    • (1978) J. Am. Chem. Soc. , vol.100 , pp. 6639
    • Witiak, D.N.1    McLafferty, F.W.2    Dill, J.D.3
  • 7
    • 84994968030 scopus 로고
    • (b) McAdoo, D. J.; Hudson, C. E. J. Am. Chem. Soc. 1981, 103, 7710.
    • Hammerum, S. Mass Spectrom. Rev. 1988, 7, 123. (b) McAdoo, D. J.; Hudson, C. E. J. Am. Chem. Soc. 1981, 103, 7710.
    • (1988) Mass Spectrom. Rev. , vol.7 , pp. 123
    • Hammerum, S.1
  • 9
    • 15444344943 scopus 로고    scopus 로고
    • (b) Cullis, P. G.; Neumann, G. M.; Rogers, D. E.; Derrick, P. J. Adv. Mass Spectrom. 1980, 8, 1729.
    • Darcy, M. G.; Rogers, D. E.; Derrick, P. J. Int. J. Mass Spectrom. Ion Phys. 1978, 27, 335. (b) Cullis, P. G.; Neumann, G. M.; Rogers, D. E.; Derrick, P. J. Adv. Mass Spectrom. 1980, 8, 1729.
    • Int. J. Mass Spectrom. Ion Phys. , vol.1978 , Issue.27 , pp. 335
    • Darcy, M.G.1    Rogers, D.E.2    Derrick, P.J.3
  • 10
    • 33947449185 scopus 로고
    • This method gives a mixture of dibromo and tribromo compounds. We could only obtain pure 1,4-bis(bromomethyl)benzene by repeated crystallization from ethanol (yield 18%).
    • Wenner, W. J. Org. Chem. 1952, 17, 523. This method gives a mixture of dibromo and tribromo compounds. We could only obtain pure 1,4-bis(bromomethyl)benzene by repeated crystallization from ethanol (yield 18%).
    • (1952) J. Org. Chem. , vol.17 , pp. 523
    • Wenner, W.1
  • 13
    • 0001320359 scopus 로고
    • Measurements were made at La Trobe University by Dr. J. C. Traeger. For a description of the technique, see
    • Measurements were made at La Trobe University by Dr. J. C. Traeger. For a description of the technique, see: Traeger, J. C.; McLoughlin, R. G. Int. J. Mass Spectrom. Ion Phys. 1978, 27, 319.
    • (1978) Int. J. Mass Spectrom. Ion Phys. , vol.27 , pp. 319
    • Traeger, J.C.1    McLoughlin, R.G.2
  • 14
    • 30844467689 scopus 로고
    • Theory of Unimolecular Reactions
    • 0) is the number of states in the transition state, and N(E) is the density of states in the reactant. See Academic: New York, The algorithm employed to count states and the computer programs have been described: Allison, C. E. Ph.D. Thesis, University of New South Wales, 1986. (Copies of this thesis are available upon request from the Librarian, University of New South Wales, P.O. Box 1, Kensington, NSW 2033, Australia.) This expression for the microcanonical rate constant k(E) was derived independently at about the same time by Rosenstock et al. (Rosenstock, H. M.; Wallenstein, M. B.; Wahrhaftig, A. L.; Eyring, H. Proc. Natl. Acad. Sci. U.S.A. 1952, 38, 667) and by Marcus (Marcus, R. A. J. Chem. Phys. 1952, 20, 359). Applied in a straightforward fashion, the absolute values of rate constants calculated using the expression have been shown to be in satisfactory agreement with experiment for a variety of large organic ions and K(E)'s in the range 10 4-10 7 s -1. See, for example: Baer, T.; Willett, G. D.; Smith, D.; Phillips, J. S. J. Chem. Phys. 1979, 70, 4076.) Our application is less demanding of the theory, because the concern is with relative rates and with parallel reactions of a single reactant occurring over identical potential energy surfaces. This places constraints upon adjustments of vibrational frequencies and critical energies. For a discussion, see: Derrick, P. J.; Donchi, K. F. In Comprehensive Chemical Kinetics; Bamford, C. H., Tipper, C. F. H., Eds.; Elsevier: Amsterdam, the Netherlands, 1983; Vol. 24, pp 53–247.
    • 0) is the number of states in the transition state, and N(E) is the density of states in the reactant. See: Forst, W. Theory of Unimolecular Reactions; Academic: New York, 1973. The algorithm employed to count states and the computer programs have been described: Allison, C. E. Ph.D. Thesis, University of New South Wales, 1986. (Copies of this thesis are available upon request from the Librarian, University of New South Wales, P.O. Box 1, Kensington, NSW 2033, Australia.) This expression for the microcanonical rate constant k(E) was derived independently at about the same time by Rosenstock et al. (Rosenstock, H. M.; Wallenstein, M. B.; Wahrhaftig, A. L.; Eyring, H. Proc. Natl. Acad. Sci. U.S.A. 1952, 38, 667) and by Marcus (Marcus, R. A. J. Chem. Phys. 1952, 20, 359). Applied in a straightforward fashion, the absolute values of rate constants calculated using the expression have been shown to be in satisfactory agreement with experiment for a variety of large organic ions and K(E)'s in the range 10 4-10 7 s -1. See, for example: Baer, T.; Willett, G. D.; Smith, D.; Phillips, J. S. J. Chem. Phys. 1979, 70, 4076.) Our application is less demanding of the theory, because the concern is with relative rates and with parallel reactions of a single reactant occurring over identical potential energy surfaces. This places constraints upon adjustments of vibrational frequencies and critical energies. For a discussion, see: Derrick, P. J.; Donchi, K. F. In Comprehensive Chemical Kinetics; Bamford, C. H., Tipper, C. F. H., Eds.; Elsevier: Amsterdam, the Netherlands, 1983; Vol. 24, pp 53–247.
    • (1973)
    • Forst, W.1
  • 15
    • 0040323749 scopus 로고
    • (b) Dewar, M. J. S.; Thiel, W. J. J. Am. Chem. Soc. 1977, 99, 4899.
    • Bingham, R. C.; Dewar, M. J. S.; Lo, D. H. J. Am. Chem. Soc. 1975, 97, 1285. (b) Dewar, M. J. S.; Thiel, W. J. J. Am. Chem. Soc. 1977, 99, 4899.
    • (1975) J. Am. Chem. Soc. , vol.97 , pp. 1285
    • Bingham, R.C.1    Dewar, M.J.S.2    Lo, D.H.3
  • 16
    • 30844467689 scopus 로고
    • Bamford, C. H., Tipper, C. F. H., Eds.; Elsevier: Amsterdam, the Netherlands
    • Derrick, P. J.; Donchi, K. F. In Comprehensive Chemical Kinetics; Bamford, C. H., Tipper, C. F. H., Eds.; Elsevier: Amsterdam, the Netherlands, 1983; Vol. 24.
    • (1983) Comprehensive Chemical Kinetics , vol.24
    • Derrick, P.J.1    Donchi, K.F.2
  • 17
    • 84872140994 scopus 로고
    • Ph.D. Thesis
    • University of New South Wales, Australia
    • Allison, C. E. Ph.D. Thesis, University of New South Wales, Australia, 1986.
    • (1986)
    • Allison, C.E.1
  • 18
    • 33847803968 scopus 로고
    • See The stabilization of the distonic ion intermediate in the Mclafferty rearrangement in a ketone shifts “hydrogen scrambling” to shorter times (nanoseconds) rather than to longer times.
    • See: Derrick, P. J.; Falick, A. M.; Burlingame, A. L.; Djerassi, C. J. Am. Chem. Soc. 1974, 96, 1054, 1059. The stabilization of the distonic ion intermediate in the Mclafferty rearrangement in a ketone shifts “hydrogen scrambling” to shorter times (nanoseconds) rather than to longer times.
    • (1974) J. Am. Chem. Soc. , vol.96 , pp. 1054-1059
    • Derrick, P.J.1    Falick, A.M.2    Burlingame, A.L.3    Djerassi, C.4
  • 19
    • 0000671274 scopus 로고
    • These theoretical analyses point to the need for care in applying the “double-fractionation argument” to unimolecular reactions of these ether molecular ions. According to this argument, the 16O/18O isotope effect should theoretically fall on replacing H by D in the case of a stepwise reaction but remain the same in the case of a synchronous reaction. In contrast to the enzyme reactions for which double-fractionation has been demonstrated unimolecular reactions of isolated ions may not occur “at a temperature” as such. With a stepwise enzyme reaction, the intermediate can be assumed to be at the temperature of the system, provided the intermediate's lifetime is long enough. With an isolated reaction, the internal energy of an intermediate in a stepwise process is dependent upon, but generally not the same as, the internal energy of the reactant. In the particular case of the ether molecular ions, the small fall in the 36O/18O isotope effect predicted for both the stepwise and the concerted model on replacing H by D is in both cases largely ar internal energy effect.
    • These theoretical analyses point to the need for care in applying the “double-fractionation argument” (Belasco, J. G.; Albery, W. J.; Knowles, J.R. J. Am. Chem. Soc. 1983, 105, 2475) to unimolecular reactions of these ether molecular ions. According to this argument, the 16O/18O isotope effect should theoretically fall on replacing H by D in the case of a stepwise reaction but remain the same in the case of a synchronous reaction. In contrast to the enzyme reactions for which double-fractionation has been demonstrated unimolecular reactions of isolated ions may not occur “at a temperature” as such. With a stepwise enzyme reaction, the intermediate can be assumed to be at the temperature of the system, provided the intermediate's lifetime is long enough. With an isolated reaction, the internal energy of an intermediate in a stepwise process is dependent upon, but generally not the same as, the internal energy of the reactant. In the particular case of the ether molecular ions, the small fall in the 36O/18O isotope effect predicted for both the stepwise and the concerted model on replacing H by D is in both cases largely ar internal energy effect.
    • (1983) J. Am. Chem. Soc. , vol.105 , pp. 2475
    • Belasco, J.G.1    Albery, W.J.2    Knowles, J.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.