-
1
-
-
0030372787
-
Two algorithms for unranking arborescences
-
C. J. Colbourn, W. J. Myrvold, and E. Neufeld, Two algorithms for unranking arborescences, J. Algorithms 20 (1996), 268-281.
-
(1996)
J. Algorithms
, vol.20
, pp. 268-281
-
-
Colbourn, C.J.1
Myrvold, W.J.2
Neufeld, E.3
-
2
-
-
0001169296
-
The hook graphs of the symmetric group
-
J. S. Frame, G. B. Robinson, and R. M. Thrall, The hook graphs of the symmetric group, Canad. J. Math. 6 (1954), 316-325.
-
(1954)
Canad. J. Math.
, vol.6
, pp. 316-325
-
-
Frame, J.S.1
Robinson, G.B.2
Thrall, R.M.3
-
3
-
-
0043261598
-
Method for constructing bijections for classical partition identities
-
A. M. Garsia and S. C. Milne, Method for constructing bijections for classical partition identities, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 2026-2028.
-
(1981)
Proc. Nat. Acad. Sci. U.S.A.
, vol.78
, pp. 2026-2028
-
-
Garsia, A.M.1
Milne, S.C.2
-
4
-
-
0010782511
-
Reverse plane partitions and tableau hook numbers
-
A. P. Hillman and R. M. Grassl, Reverse plane partitions and tableau hook numbers, J. Combin. Theory Ser. A 21 (1976), 216-221.
-
(1976)
J. Combin. Theory Ser. A
, vol.21
, pp. 216-221
-
-
Hillman, A.P.1
Grassl, R.M.2
-
5
-
-
0346502400
-
An involution principle-free bijective proof of Stanley's hook-content formula
-
C. Krattenthaler, An involution principle-free bijective proof of Stanley's hook-content formula, Discrete Math. Theoret. Comput. Sci. 3 (1998), 011-032.
-
(1998)
Discrete Math. Theoret. Comput. Sci.
, vol.3
, pp. 11-32
-
-
Krattenthaler, C.1
-
6
-
-
0029519310
-
Markov chain algorithms for planar lattice structures
-
M. Luby, D. Randall, and A. Sinclair, Markov chain algorithms for planar lattice structures (extended abstract), in "36th Annual Symposium on Foundations of Computer Science, 1995," pp. 150-159.
-
36th Annual Symposium on Foundations of Computer Science, 1995
, pp. 150-159
-
-
Luby, M.1
Randall, D.2
Sinclair, A.3
-
7
-
-
0004205061
-
-
Cambridge Univ. Press, Cambridge, UK, reprinted by Chelsea, New York
-
P. A. MacMahon, "Combinatory Analysis," Cambridge Univ. Press, Cambridge, UK, 1916; reprinted by Chelsea, New York, 1960.
-
(1916)
Combinatory Analysis
-
-
MacMahon, P.A.1
-
8
-
-
0012576167
-
A direct bijective proof of the hook-length formula
-
J. C. Novelli, I. M. Pak, and A. V. Stoyanovskii, A direct bijective proof of the hook-length formula, Discrete Math. Theoret. Comput. Sdci 1 (1997), 53-67.
-
(1997)
Discrete Math. Theoret. Comput. Sci
, vol.1
, pp. 53-67
-
-
Novelli, J.C.1
Pak, I.M.2
Stoyanovskii, A.V.3
-
9
-
-
0040210740
-
A bijective proof of the hook-length formula and its analogues
-
I. M. Pak and A. V. Stoyanovskii, A bijective proof of the hook-length formula and its analogues, Funktsional Anal. i Prilozhen. 26, No. 3 (1992), 80-82; English translation, Funct. Anal. Appl. 26 (1992), 216-218.
-
(1992)
Funktsional Anal. i Prilozhen.
, vol.26
, Issue.3
, pp. 80-82
-
-
Pak, I.M.1
Stoyanovskii, A.V.2
-
10
-
-
0040210740
-
-
English translation
-
I. M. Pak and A. V. Stoyanovskii, A bijective proof of the hook-length formula and its analogues, Funktsional Anal. i Prilozhen. 26, No. 3 (1992), 80-82; English translation, Funct. Anal. Appl. 26 (1992), 216-218.
-
(1992)
Funct. Anal. Appl.
, vol.26
, pp. 216-218
-
-
-
11
-
-
0347132820
-
Generating random elements of finite distributive lattices
-
J. Propp, Generating random elements of finite distributive lattices, Electron. J. Combin. 4, No. 2 (1997), #R15.
-
(1997)
Electron. J. Combin.
, vol.4
, Issue.2
-
-
Propp, J.1
-
12
-
-
0005193926
-
Exact sampling with coupled Markov chains and applications to statistical mechanics
-
J. Propp and D. B. Wilson, Exact sampling with coupled Markov chains and applications to statistical mechanics, Random Structures Algorithms 9 (1996), 223-252.
-
(1996)
Random Structures Algorithms
, vol.9
, pp. 223-252
-
-
Propp, J.1
Wilson, D.B.2
-
13
-
-
0000082687
-
Coupling from the past: A user's guide
-
(D. Aldous and J. Propp, Eds.), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Amer. Math. Soc., Providence
-
J. Propp and D. B. Wilson, Coupling from the past: A user's guide, in "Microsurveys in Discrete Probability" (D. Aldous and J. Propp, Eds.), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Vol.41, pp. 181-192, Amer. Math. Soc., Providence, 1998.
-
(1998)
Microsurveys in Discrete Probability
, vol.41
, pp. 181-192
-
-
Propp, J.1
Wilson, D.B.2
-
14
-
-
0011568501
-
A bijective proof of the hook formula for the number of column-strict tableaux with bounded entries
-
J. B. Remmel and R. Whitney, A bijective proof of the hook formula for the number of column-strict tableaux with bounded entries, European J. Combin. 4 (1983), 45-63.
-
(1983)
European J. Combin.
, vol.4
, pp. 45-63
-
-
Remmel, J.B.1
Whitney, R.2
-
15
-
-
0002138401
-
The story of 1, 2, 7, 42, 429, 7436,
-
D. P. Robbins, The story of 1, 2, 7, 42, 429, 7436, ..., Math. Intelligencer 13 (1991), 12-19.
-
(1991)
Math. Intelligencer
, vol.13
, pp. 12-19
-
-
Robbins, D.P.1
-
16
-
-
0003823142
-
-
Wadsworth & Brooks/Cole, Pacific Grove, CA
-
B. E. Sagan, "The Symmetric Group," Wadsworth & Brooks/Cole, Pacific Grove, CA, 1991.
-
(1991)
The Symmetric Group
-
-
Sagan, B.E.1
-
17
-
-
0006661490
-
La correspondance de Robinson
-
Combinatoire et Représentation du Groupe Symétrique, Springer-Verlag, Berlin/Heidelberg/New York
-
M.-P. Schützenberger, La correspondance de Robinson, in "Combinatoire et Représentation du Groupe Symétrique, Lecture Notes in Math., Vol. 579, pp. 59-113, Springer-Verlag, Berlin/Heidelberg/New York, 1977.
-
(1977)
Lecture Notes in Math.
, vol.579
, pp. 59-113
-
-
Schützenberger, M.-P.1
-
18
-
-
84956502499
-
Theory and applications of plane partitions
-
R. P. Stanley, Theory and applications of plane partitions, Part 2, Stud. Appl. Math. 50 (1971), 259-279.
-
(1971)
Part 2, Stud. Appl. Math.
, vol.50
, pp. 259-279
-
-
Stanley, R.P.1
|