-
2
-
-
84990131877
-
-
(b) Ermer, O.; Eling, A. Angew. Chem., Int. Ed. Engl. 1988, 27, 829.
-
(1988)
Angew. Chem., Int. Ed. Engl.
, vol.27
, pp. 829
-
-
Ermer, O.1
Eling, A.2
-
5
-
-
12044251859
-
-
Simard, M.; Su, D.; Wuest, J. D. J. Am. Chem. Soc. 1991, 113, 4696.
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 4696
-
-
Simard, M.1
Su, D.2
Wuest, J.D.3
-
6
-
-
0029920165
-
-
Reddy, D. S.; Craig, D. C.; Desiraju, G. R. J. Am. Chem. Soc. 1996, 118, 4090.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 4090
-
-
Reddy, D.S.1
Craig, D.C.2
Desiraju, G.R.3
-
8
-
-
0141827534
-
-
(b) Guo, W. Z.; Galoppini, E.; Gilardi, R.; Rydja, G. I.; Chen, Y. H. Cryst. Growth Des. 2001, 1, 231.
-
(2001)
Cryst. Growth Des.
, vol.1
, pp. 231
-
-
Guo, W.Z.1
Galoppini, E.2
Gilardi, R.3
Rydja, G.I.4
Chen, Y.H.5
-
9
-
-
0003030601
-
-
(a) Kitazawa, T.; Nishikiori, S.; Kuroda, R.; Iwamoto, T. Chem. Lett. 1988, 1729.
-
(1988)
Chem. Lett.
, pp. 1729
-
-
Kitazawa, T.1
Nishikiori, S.2
Kuroda, R.3
Iwamoto, T.4
-
10
-
-
37049068327
-
-
(b) Kitazawa, T.; Nishikiori, S.; Yamagishi, A.; Kuroda, R.; Iwamoto, T. Chem. Commun. 1992, 413.
-
(1992)
Chem. Commun.
, pp. 413
-
-
Kitazawa, T.1
Nishikiori, S.2
Yamagishi, A.3
Kuroda, R.4
Iwamoto, T.5
-
11
-
-
0001434508
-
-
(a) Copp, S. B.; Subramanian, S.; Zaworotko, M. J. J. Am. Chem. Soc. 1992, 114, 8719.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 8719
-
-
Copp, S.B.1
Subramanian, S.2
Zaworotko, M.J.3
-
13
-
-
0011558273
-
-
(c) Copp, S. B.; Holman, K. T.; Sangster, J. O. S.; Subramanian, S.; Zaworotko, M. J. J. Chem. Soc., Dalton Trans. 1995, 2233.
-
(1995)
J. Chem. Soc., Dalton Trans.
, pp. 2233
-
-
Copp, S.B.1
Holman, K.T.2
Sangster, J.O.S.3
Subramanian, S.4
Zaworotko, M.J.5
-
14
-
-
37049073780
-
-
(a) Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A. Chem. Commun. 1994, 2755.
-
(1994)
Chem. Commun.
, pp. 2755
-
-
Carlucci, L.1
Ciani, G.2
Proserpio, D.M.3
Sironi, A.4
-
15
-
-
0037006826
-
-
(b) Carlucci, L.; Ciani, G.; Proserpio, D. M.; Rizzato, S. Chem.-Eur. J. 2002, 1520.
-
(2002)
Chem.-Eur. J.
, pp. 1520
-
-
Carlucci, L.1
Ciani, G.2
Proserpio, D.M.3
Rizzato, S.4
-
16
-
-
0034605895
-
-
Reddy, D. S.; Dewa, T.; Endo, K.; Aoyama, Y. Angew. Chem., Int. Ed. 2000, 39, 4266.
-
(2000)
Angew. Chem., Int. Ed.
, vol.39
, pp. 4266
-
-
Reddy, D.S.1
Dewa, T.2
Endo, K.3
Aoyama, Y.4
-
17
-
-
0141492869
-
-
(a) Evans, O. R.; Xiong, R.-G.; Wang, Z.; Wong, G. K.; Lin, W. Angew. Chem., Int. Ed. 1999, 38, 526.
-
(1999)
Angew. Chem., Int. Ed.
, vol.38
, pp. 526
-
-
Evans, O.R.1
Xiong, R.-G.2
Wang, Z.3
Wong, G.K.4
Lin, W.5
-
18
-
-
0000257739
-
-
(b) Evans, O. R.; Wang, Z.; Xiong, R.-G.; Foxman, B. M.; Lin, W. Inorg. Chem. 1999, 38, 2969.
-
(1999)
Inorg. Chem.
, vol.38
, pp. 2969
-
-
Evans, O.R.1
Wang, Z.2
Xiong, R.-G.3
Foxman, B.M.4
Lin, W.5
-
21
-
-
0003072119
-
-
Thaimattam, R.; Sharma, C. V. K.; Clearfield, A.; Desiraju, G. R. Cryst. Growth Des. 2001, 1, 103.
-
(2001)
Cryst. Growth Des.
, vol.1
, pp. 103
-
-
Thaimattam, R.1
Sharma, C.V.K.2
Clearfield, A.3
Desiraju, G.R.4
-
24
-
-
0141593830
-
Nonlinear polarization
-
Degiorgio, V., Flytzanis, C., Eds.: IOS Press: Washington
-
A variety of binary inorganic compounds with nonlinear optical properties are known to belong to this class. See: (a) Flytzanis, C. Nonlinear Polarization. In Nonlinear Optical Materials: Principles and Applications; Degiorgio, V., Flytzanis, C., Eds.: IOS Press: Washington, 1995; pp 3 and 97.
-
(1995)
Nonlinear Optical Materials: Principles and Applications
, pp. 3
-
-
Flytzanis, C.1
-
25
-
-
0141827532
-
Optical parametric processes and inorganic nonlinear optical crystals
-
Degiorgio, V., Flytzanis, C., Eds.; IOS Press: Washington
-
(b) Tang, C. L. Optical Parametric Processes and Inorganic Nonlinear Optical Crystals. In Nonlinear Optical Materials: Principles and Applications: Degiorgio, V., Flytzanis, C., Eds.; IOS Press: Washington, 1995; pp 3 and 97.
-
(1995)
Nonlinear Optical Materials: Principles and Applications
, pp. 3
-
-
Tang, C.L.1
-
26
-
-
37049069349
-
-
To the best of our knowledge, only Reddy and Desiraju proceeded with attempts of molecular assembly of this type. See: (a) Reddy, D. S.; Craig, D. C.; Rae, A. D.; Desiraju, G. R. Chem. Commun. 1993, 1737.
-
(1993)
Chem. Commun.
, pp. 1737
-
-
Reddy, D.S.1
Craig, D.C.2
Rae, A.D.3
Desiraju, G.R.4
-
28
-
-
85046386002
-
-
The Braggs concluded their historic communication entitled "The Structure of the Diamond" with the succinct statement: "...Zincblende appears to have the same structure, but the (111) planes contain alternately only zinc and only sulfur atoms. In this way the crystal acquires polarity and becomes hemihedral..." See: Bragg, W. H.; Bragg, W. L. Nature 1913, 91, 557.
-
(1913)
Nature
, vol.91
, pp. 557
-
-
See Bragg, W.H.1
Bragg, W.L.2
-
29
-
-
0003524428
-
-
Oxford University Press: New York
-
-1. [See: Petrenko, V. F.: Whitworth, R. W. Physics of Ice; Oxford University Press: New York, 1999; pp 276-277.] The diamondoid/hexagonal relationship for the assembly of tetrahedral elements is dependent on close molecular packing, for example, as recently shown by the nature of encapsulated guest molecules in clathrate complexes by: Kitazawa, T.; Kikuyama, T.; Takeda, M.; Iwamoto, T. J. Chem. Soc.. Dalton Trans. 1995, 3715.
-
(1999)
Physics of Ice
, pp. 276-277
-
-
Petrenko, V.F.1
Whitworth, R.W.2
-
30
-
-
37049072632
-
-
-1. [See: Petrenko, V. F.: Whitworth, R. W. Physics of Ice; Oxford University Press: New York, 1999; pp 276-277.] The diamondoid/hexagonal relationship for the assembly of tetrahedral elements is dependent on close molecular packing, for example, as recently shown by the nature of encapsulated guest molecules in clathrate complexes by: Kitazawa, T.; Kikuyama, T.; Takeda, M.; Iwamoto, T. J. Chem. Soc.. Dalton Trans. 1995, 3715.
-
(1995)
J. Chem. Soc. Dalton Trans.
, pp. 3715
-
-
Kitazawa, T.1
Kikuyama, T.2
Takeda, M.3
Iwamoto, T.4
-
31
-
-
0001407104
-
-
3) for organic compounds. Nevertheless, a possibility of the stabilization and utilization of such "organic zeolites" appears to be very attractive. See. for example: Aoyama, Y. Top. Curr. Chem. 1998, 198, 132.
-
(1998)
Top. Curr. Chem.
, vol.198
, pp. 132
-
-
Aoyama, Y.1
-
32
-
-
0032546766
-
-
Batten, S. R.; Robson, R. Angew. Chem., Int. Ed. 1998, 37, 1460.
-
(1998)
Angew. Chem., Int. Ed.
, vol.37
, pp. 1460
-
-
Batten, S.R.1
Robson, R.2
-
33
-
-
0031027021
-
-
Hirsch, K. A.; Wilson, S. R.; Moore, J. S. Chem.-Eur. J. 1997, 3, 765.
-
(1997)
Chem.-Eur. J.
, vol.3
, pp. 765
-
-
Hirsch, K.A.1
Wilson, S.R.2
Moore, J.S.3
-
34
-
-
0141716187
-
-
note
-
4 counterion). However, this approach did not become popular (except for works of Wuest2 and Desiraju13b) - mainly because of the significant volatility of the exceedingly solvated clathrate crystals.20
-
-
-
-
35
-
-
0034742850
-
-
It should be mentioned that the close-packing principle sometimes can be satisfied by the combination of interpenetration and clathration within the same crystal. See, for example: Zhang, J.; Lin, W.; Chen, Z.-F.; Xiong, R.-G.; Abrahams, B. F.; Fun, H.-K. J. Chem. Soc., Dalton Trans. 2001, 1806.
-
(2001)
J. Chem. Soc., Dalton Trans.
, pp. 1806
-
-
Zhang, J.1
Lin, W.2
Chen, Z.-F.3
Xiong, R.-G.4
Abrahams, B.F.5
Fun, H.-K.6
-
36
-
-
0141716188
-
-
note
-
4 diamondoid network was sufficient to complete (structural) stabilization. Yet thereafter this approach did not become popular.23
-
-
-
-
37
-
-
0141716189
-
-
note
-
2] is two-fold interpenetrated.11b
-
-
-
-
38
-
-
0141716181
-
-
note
-
The void space in the large diamondoid networks can be compensated by the combination of counterion filling and solvent clathration11 (cf. ref 20).
-
-
-
-
43
-
-
0040685824
-
-
(c) Stavely, L. A. K.; Topman, W. I.; Hart, K. R. Trans. Faraday Soc. 1955, 51, 323.
-
(1955)
Trans. Faraday Soc.
, vol.51
, pp. 323
-
-
Stavely, L.A.K.1
Topman, W.I.2
Hart, K.R.3
-
45
-
-
0000845781
-
-
(e) Goates, J. R.; Sullivan, R. J.; Ott, J. B. J. Phys. Chem. 1959, 63, 589.
-
(1959)
J. Phys. Chem.
, vol.63
, pp. 589
-
-
Goates, J.R.1
Sullivan, R.J.2
Ott, J.B.3
-
47
-
-
0009603978
-
-
(g) Anderson, R.; Prausnitz, J. M. J. Chem. Phys. 1963, 39, 1225; 1964, 40, 3443.
-
(1963)
J. Chem. Phys.
, vol.39
, pp. 1225
-
-
Anderson, R.1
Prausnitz, J.M.2
-
48
-
-
0009603978
-
-
(g) Anderson, R.; Prausnitz, J. M. J. Chem. Phys. 1963, 39, 1225; 1964, 40, 3443.
-
(1964)
J. Chem. Phys.
, vol.40
, pp. 3443
-
-
-
50
-
-
4243810871
-
-
(i) Chantry, G. W.; Gebbie, H. A.; Mirza, H. N. Spectrochim. Acta 1967, 23A, 2749.
-
(1967)
Spectrochim. Acta
, vol.23 A
, pp. 2749
-
-
Chantry, G.W.1
Gebbie, H.A.2
Mirza, H.N.3
-
54
-
-
0001211770
-
-
(a) Blackstock, S. C.; Lorand, J. P.; Kochi, J. K. J. Org. Chem. 1987, 52, 1451.
-
(1987)
J. Org. Chem.
, vol.52
, pp. 1451
-
-
Blackstock, S.C.1
Lorand, J.P.2
Kochi, J.K.3
-
56
-
-
0142175456
-
-
For molecular crystals, the large magnitude of nonlinear optical properties is expected from intramolecular electronic coupling between donor and acceptor groups. See: (a) Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94, 195.
-
(1994)
J. Chem. Rev.
, vol.94
, pp. 195
-
-
Kanis, D.R.1
Ratner, M.A.2
Marks, T.3
-
57
-
-
0009350146
-
-
(b) Meyers, F.; Marder, S. R.; Pierce, B. M. N.; Bredas, J. L. J. Am. Chem. Soc. 1994, 116, 10703.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 10703
-
-
Meyers, F.1
Marder, S.R.2
Pierce, B.M.N.3
Bredas, J.L.4
-
58
-
-
0003595554
-
-
Nalva, H. S., Miyata, S., Eds.; CRC Press: New York
-
(c) Nonlinear Optics of Organic Molecules and Polymers; Nalva, H. S., Miyata, S., Eds.; CRC Press: New York, 1997. However, the intermolecular electronic coupling between donor and acceptor species may have the same effect.
-
(1997)
Nonlinear Optics of Organic Molecules and Polymers
-
-
-
63
-
-
0141604474
-
-
note
-
-1 in solutions.26a
-
-
-
-
65
-
-
0141604470
-
-
note
-
4⋯halide) interactions were found to be in the range of 0.1-0.2 mdyn/Å.28a.b
-
-
-
-
67
-
-
0141604473
-
-
note
-
This is in agreement with the earlier data based on the measurement of the electrical conductivity of solutions.28c
-
-
-
-
68
-
-
0141827527
-
-
note
-
4 absorption. Therefore, differential spectra were calculated, and Gaussian simulation was applied to properly evaluate its parameters.
-
-
-
-
69
-
-
0141716180
-
-
note
-
-1).
-
-
-
-
78
-
-
0042291889
-
-
Astruc, D., Ed.; VCH-Wiley: New York
-
AB in the range of 0.2-0.5 eV. See: Rosokha, S. V.; Kochi, J. K. In Modern Arene Chemistry: Astruc, D., Ed.; VCH-Wiley: New York, 2002; pp 435ff.
-
(2002)
Modern Arene Chemistry
-
-
Rosokha, S.V.1
Kochi, J.K.2
-
79
-
-
0141604471
-
-
note
-
- anionic network) assumed that these two types of cavities possess a different "amount of electric charge". From the point of view of crystal symmetry, this assumption is probably incorrect; yet these two types of cavities do possess quite different (either tetrahedral or octahedral) symmetry of electrostatic potential. In our case, the tetrahedral ammonium ion occupies cavities with symmetrically aligned (tetrahedral) arrangements of halide.
-
-
-
-
80
-
-
0141492863
-
-
note
-
4] complexes at that time was mistakenly attributed to cubic syngony.
-
-
-
-
81
-
-
0141716176
-
-
note
-
4] to exhibit a phase transition into the cubic symmetry above 25 °C. However, the complete structural study was discouraged by the experimental difficulties of consistently maintaining an elevated temperature over prolonged times.
-
-
-
-
82
-
-
0033591277
-
-
-, respectively) relative to the ideal values required by the F-centered cubic cell. For an example of the similar effect of guest molecules on the symmetry of diamondoid networks, see: Kitazawa, T. Chem. Commun. 1999, 891.
-
(1999)
Chem. Commun.
, pp. 891
-
-
Kitazawa, T.1
-
83
-
-
0141604472
-
-
note
-
+ counterions that dominate the structure.
-
-
-
-
84
-
-
0141716175
-
-
note
-
+HC) cationic center.
-
-
-
-
85
-
-
0141492862
-
-
note
-
+ counterions are disordered in the rhombocubooctahedral cavities of this centrosymmetric network to comply with the dissimilar symmetry of the voids.
-
-
-
-
86
-
-
0141827524
-
-
note
-
4], these bonds are 1.953-1.957(2) Å.
-
-
-
-
87
-
-
0001565534
-
-
More, M.; Baert, F.; LeFebvre, J. L. Acta Crystallogr., Sect. B 1977, 33, 3681.
-
(1977)
Acta Crystallogr., Sect. B
, vol.33
, pp. 3681
-
-
More, M.1
Baert, F.2
LeFebvre, J.L.3
-
88
-
-
0141827526
-
-
note
-
As an example, Evans, Lin, and co-workers deliberately utilized the absence of inversion symmetry in the odd-order (interpenetrated) diamondoid networks to assemble a variety of interesting noncentrosymmetric crystal structures exhibiting SHG activity.9d
-
-
-
-
89
-
-
0141716177
-
-
note
-
54
-
-
-
-
90
-
-
0000055624
-
-
Some interesting views on the electronic origins of the hardness of the diamond and diamondlike materials can be found in: Proserpio, D. M.; Hoffmann, R.; Preuss, P. J. Am. Chem. Soc. 1994, 116, 9634.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 9634
-
-
Proserpio, D.M.1
Hoffmann, R.2
Preuss, P.3
-
92
-
-
0035793663
-
-
(b) Gieck, C.; Rocker, F.; Ksenofontov, V.; Gütlich, P.; Tremel, W. Angew. Chem., Int. Ed. 2001, 40, 908.
-
(2001)
Angew. Chem., Int. Ed.
, vol.40
, pp. 908
-
-
Gieck, C.1
Rocker, F.2
Ksenofontov, V.3
Gütlich, P.4
Tremel, W.5
-
93
-
-
0141827525
-
-
note
-
For binary (covalent) diamondoid crystals such as GaAs or 1nP, the large hyperpolarizability values were shown to arise from the charge asymmetry along the heteropolar bonds.12a
-
-
-
-
94
-
-
0141492864
-
-
note
-
4] show relatively strong SHG-intensity that appeared to be phase-matchable, and 500 times larger than the SHG response of quartz. Two other samples show similar SHG behavior.
-
-
-
-
97
-
-
0021456218
-
-
Howell, J. O.; Goncalves, J. M.; Amatore, C.; Klasinc, L.; Wightman, R. M.; Kochi, J. K. J. Am. Chem. Soc. 1984, 106, 3968.
-
(1984)
J. Am. Chem. Soc.
, vol.106
, pp. 3968
-
-
Howell, J.O.1
Goncalves, J.M.2
Amatore, C.3
Klasinc, L.4
Wightman, R.M.5
Kochi, J.K.6
-
102
-
-
0141716178
-
-
note
-
The powder X-ray diffraction pattern of the sample supplied for the measurements of the second harmonics generation coincided with the powder diffraction pattern simulated from the single-crystal X-ray measurements as described in Figure S4 in the Supporting Information. This result confirms the crystallographic authenticity of the samples used for the structural/optical measurements.
-
-
-
|