-
1
-
-
0034660730
-
Supervised learning for the analysis of the process operational data
-
Yamashita Y., Supervised learning for the analysis of the process operational data. Computers and Chemical Engineering. 24:2000;471-474.
-
(2000)
Computers and Chemical Engineering
, vol.24
, pp. 471-474
-
-
Yamashita, Y.1
-
2
-
-
0031153979
-
Process monitoring using non-linear statistical techniques
-
Zhang J., Martin E., Morris A., Process monitoring using non-linear statistical techniques. Chemical Engineering Journal. 67:1997;181-189.
-
(1997)
Chemical Engineering Journal
, vol.67
, pp. 181-189
-
-
Zhang, J.1
Martin, E.2
Morris, A.3
-
4
-
-
0029267381
-
Statistical process control of multivariate processes
-
MacGregor J., Kourti T., Statistical process control of multivariate processes. Control Engineering Practice. 3(3):1995;403-414.
-
(1995)
Control Engineering Practice
, vol.3
, Issue.3
, pp. 403-414
-
-
MacGregor, J.1
Kourti, T.2
-
5
-
-
0029701082
-
Batch process monitoring for consistent production
-
E. Martin, A. Morris, M. Papazoglou, C. Kiparissides, Batch process monitoring for consistent production, Computers and Chemical Engineering 20 (1996) S599-S605.
-
(1996)
Computers and Chemical Engineering
, vol.20
-
-
Martin, E.1
Morris, A.2
Papazoglou, M.3
Kiparissides, C.4
-
6
-
-
0034661358
-
New product design via analysis of historical databases
-
Lakshminarayanan S., Fujii H., Grossman B., Dassau E., Lewin D., New product design via analysis of historical databases. Computers and Chemical Engineering. 24:2000;671-676.
-
(2000)
Computers and Chemical Engineering
, vol.24
, pp. 671-676
-
-
Lakshminarayanan, S.1
Fujii, H.2
Grossman, B.3
Dassau, E.4
Lewin, D.5
-
7
-
-
0141797200
-
Operation planning and quality design of a polymer process
-
Y. Moteki, Y. Arai, Operation planning and quality design of a polymer process, IFAC DYCORD, 1986, pp. 159-165.
-
(1986)
IFAC DYCORD
, pp. 159-165
-
-
Moteki, Y.1
Arai, Y.2
-
9
-
-
0033577786
-
Quantitative composition-property modelling of rubber mixtures by utilizing artificial neural networks
-
Borosy A., Quantitative composition-property modelling of rubber mixtures by utilizing artificial neural networks. Chemometrics and Intelligent Laboratory Systems. 47:1998;227-238.
-
(1998)
Chemometrics and Intelligent Laboratory Systems
, vol.47
, pp. 227-238
-
-
Borosy, A.1
-
11
-
-
0000903874
-
Soft computing for feature analysis
-
Pal N., Soft computing for feature analysis. Fuzzy Sets and Systems. 103:1999;201-221.
-
(1999)
Fuzzy Sets and Systems
, vol.103
, pp. 201-221
-
-
Pal, N.1
-
12
-
-
0025489075
-
The self-organizing map
-
Kohonen T., The self-organizing map. Proceedings of the IEEE. 78(9)(9):1990;1464-1480.
-
(1990)
Proceedings of the IEEE
, vol.78
, Issue.9
, pp. 1464-1480
-
-
Kohonen, T.1
-
13
-
-
0346186573
-
Process state monitoring using self-organizing maps
-
North-Holland, Amsterdam
-
M. Kassalin, J. Kangas, O. Simula, Process state monitoring using self-organizing maps, in: Artificial Neural Networks, vol II, North-Holland, Amsterdam, pp. 1531-1534.
-
Artificial Neural Networks
, vol.2
, pp. 1531-1534
-
-
Kassalin, M.1
Kangas, J.2
Simula, O.3
-
14
-
-
0002644579
-
Self-organizing feature maps for process control in chemistry
-
North-Holland, Amsterdam
-
V. Tryba, K. Goser, Self-organizing feature maps for process control in chemistry, in: Artificial Neural Networks, North-Holland, Amsterdam, 1991, pp. 847-852.
-
(1991)
Artificial Neural Networks
, pp. 847-852
-
-
Tryba, V.1
Goser, K.2
-
15
-
-
0141462306
-
Process error detection using self-organizing feature maps
-
North-Holland, Amsterdam
-
J. Alander, M. Frisk, L. Holmstom, A. Hamalainen, J. Tuominen, Process error detection using self-organizing feature maps, in: Artificial Neural Networks, vol II, North-Holland, Amsterdam, 1991 pp. 1229-1232.
-
(1991)
Artificial Neural Networks
, vol.2
, pp. 1229-1232
-
-
Alander, J.1
Frisk, M.2
Holmstom, L.3
Hamalainen, A.4
Tuominen, J.5
-
16
-
-
0032203424
-
Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control
-
J. Principe, L. Wang, M. Motter, Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control, Proceedings of the IEEE 86 (11) 2241-2258.
-
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2241-2258
-
-
Principe, J.1
Wang, L.2
Motter, M.3
-
17
-
-
0012216623
-
Neural network tool for data mining: Som toolbox
-
Oulun yliopistopaino, Oulu, Finland
-
J. Vesanto, 2000. Neural network tool for data mining: Som toolbox, in: Proceedings of Symposium on Tool Environments and Development Methods for Intelligent Systems (TOOLMET2000), Oulun yliopistopaino, Oulu, Finland, pp. 184-196.
-
(2000)
Proceedings of Symposium on Tool Environments and Development Methods for Intelligent Systems (TOOLMET2000)
, pp. 184-196
-
-
Vesanto, J.1
-
18
-
-
0037361892
-
Learning fuzzy classification rules from labeled data
-
Roubos J., Setnes M., Abonyi J., Learning fuzzy classification rules from labeled data. Information Sciences. 150(1-2):2003;77-93.
-
(2003)
Information Sciences
, vol.150
, Issue.1-2
, pp. 77-93
-
-
Roubos, J.1
Setnes, M.2
Abonyi, J.3
-
19
-
-
84946100526
-
The polyethylene
-
in Hungarian
-
Nagy G., The polyethylene. Magyar Kemikusok Lapja (MKL). 52(5)(5):1997;233-242. in Hungarian.
-
(1997)
Magyar Kemikusok Lapja (MKL)
, vol.52
, Issue.5
, pp. 233-242
-
-
Nagy, G.1
-
20
-
-
0011834489
-
-
Physica Verlag, Springer, Verlag
-
O. Simula, J. Vesanto, E. Alhoniemi, J. Hollomen, Analysis and modeling of complex systems using the Self-Organizing Map, in: Physica Verlag, Springer, Verlag, 1999.
-
(1999)
Analysis and Modeling of Complex Systems Using the Self-organizing Map
-
-
Simula, O.1
Vesanto, J.2
Alhoniemi, E.3
Hollomen, J.4
|