메뉴 건너뛰기




Volumn 52, Issue 3, 2003, Pages 221-234

Process analysis and product quality estimation by Self-Organizing Maps with an application to polyethylene production

Author keywords

Operating regime based modeling; Process monitoring; Product analysis and design; Self Organizing Map (SOM); Voronoi diagram

Indexed keywords

MATHEMATICAL MODELS; POLYETHYLENES; QUALITY CONTROL; SELF ORGANIZING MAPS;

EID: 0141636588     PISSN: 01663615     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0166-3615(03)00128-3     Document Type: Article
Times cited : (38)

References (20)
  • 1
    • 0034660730 scopus 로고    scopus 로고
    • Supervised learning for the analysis of the process operational data
    • Yamashita Y., Supervised learning for the analysis of the process operational data. Computers and Chemical Engineering. 24:2000;471-474.
    • (2000) Computers and Chemical Engineering , vol.24 , pp. 471-474
    • Yamashita, Y.1
  • 2
    • 0031153979 scopus 로고    scopus 로고
    • Process monitoring using non-linear statistical techniques
    • Zhang J., Martin E., Morris A., Process monitoring using non-linear statistical techniques. Chemical Engineering Journal. 67:1997;181-189.
    • (1997) Chemical Engineering Journal , vol.67 , pp. 181-189
    • Zhang, J.1    Martin, E.2    Morris, A.3
  • 4
    • 0029267381 scopus 로고
    • Statistical process control of multivariate processes
    • MacGregor J., Kourti T., Statistical process control of multivariate processes. Control Engineering Practice. 3(3):1995;403-414.
    • (1995) Control Engineering Practice , vol.3 , Issue.3 , pp. 403-414
    • MacGregor, J.1    Kourti, T.2
  • 7
    • 0141797200 scopus 로고
    • Operation planning and quality design of a polymer process
    • Y. Moteki, Y. Arai, Operation planning and quality design of a polymer process, IFAC DYCORD, 1986, pp. 159-165.
    • (1986) IFAC DYCORD , pp. 159-165
    • Moteki, Y.1    Arai, Y.2
  • 8
    • 0032069959 scopus 로고    scopus 로고
    • Product design through multivariate statistical analysis of process data
    • Jeackle C., MacGregor J., Product design through multivariate statistical analysis of process data. American Institute of Chemical Engineering Journal. 44(5):1998;1105-1118.
    • (1998) American Institute of Chemical Engineering Journal , vol.44 , Issue.5 , pp. 1105-1118
    • Jeackle, C.1    MacGregor, J.2
  • 9
    • 0033577786 scopus 로고    scopus 로고
    • Quantitative composition-property modelling of rubber mixtures by utilizing artificial neural networks
    • Borosy A., Quantitative composition-property modelling of rubber mixtures by utilizing artificial neural networks. Chemometrics and Intelligent Laboratory Systems. 47:1998;227-238.
    • (1998) Chemometrics and Intelligent Laboratory Systems , vol.47 , pp. 227-238
    • Borosy, A.1
  • 11
    • 0000903874 scopus 로고    scopus 로고
    • Soft computing for feature analysis
    • Pal N., Soft computing for feature analysis. Fuzzy Sets and Systems. 103:1999;201-221.
    • (1999) Fuzzy Sets and Systems , vol.103 , pp. 201-221
    • Pal, N.1
  • 12
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen T., The self-organizing map. Proceedings of the IEEE. 78(9)(9):1990;1464-1480.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 13
    • 0346186573 scopus 로고    scopus 로고
    • Process state monitoring using self-organizing maps
    • North-Holland, Amsterdam
    • M. Kassalin, J. Kangas, O. Simula, Process state monitoring using self-organizing maps, in: Artificial Neural Networks, vol II, North-Holland, Amsterdam, pp. 1531-1534.
    • Artificial Neural Networks , vol.2 , pp. 1531-1534
    • Kassalin, M.1    Kangas, J.2    Simula, O.3
  • 14
    • 0002644579 scopus 로고
    • Self-organizing feature maps for process control in chemistry
    • North-Holland, Amsterdam
    • V. Tryba, K. Goser, Self-organizing feature maps for process control in chemistry, in: Artificial Neural Networks, North-Holland, Amsterdam, 1991, pp. 847-852.
    • (1991) Artificial Neural Networks , pp. 847-852
    • Tryba, V.1    Goser, K.2
  • 15
    • 0141462306 scopus 로고
    • Process error detection using self-organizing feature maps
    • North-Holland, Amsterdam
    • J. Alander, M. Frisk, L. Holmstom, A. Hamalainen, J. Tuominen, Process error detection using self-organizing feature maps, in: Artificial Neural Networks, vol II, North-Holland, Amsterdam, 1991 pp. 1229-1232.
    • (1991) Artificial Neural Networks , vol.2 , pp. 1229-1232
    • Alander, J.1    Frisk, M.2    Holmstom, L.3    Hamalainen, A.4    Tuominen, J.5
  • 16
    • 0032203424 scopus 로고    scopus 로고
    • Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control
    • J. Principe, L. Wang, M. Motter, Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control, Proceedings of the IEEE 86 (11) 2241-2258.
    • Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2241-2258
    • Principe, J.1    Wang, L.2    Motter, M.3
  • 18
    • 0037361892 scopus 로고    scopus 로고
    • Learning fuzzy classification rules from labeled data
    • Roubos J., Setnes M., Abonyi J., Learning fuzzy classification rules from labeled data. Information Sciences. 150(1-2):2003;77-93.
    • (2003) Information Sciences , vol.150 , Issue.1-2 , pp. 77-93
    • Roubos, J.1    Setnes, M.2    Abonyi, J.3
  • 19
    • 84946100526 scopus 로고    scopus 로고
    • The polyethylene
    • in Hungarian
    • Nagy G., The polyethylene. Magyar Kemikusok Lapja (MKL). 52(5)(5):1997;233-242. in Hungarian.
    • (1997) Magyar Kemikusok Lapja (MKL) , vol.52 , Issue.5 , pp. 233-242
    • Nagy, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.